The increasing volume and complexity of waste associated with the modern economy poses a serious risk to ecosystems and human health. However, the remanufacturing and recycling of waste into usable products can lead to substantial resource savings. In the present study, clam shell waste was first transformed into pure and well-crystallized single-phase white light-emitting phosphor Ca₉Gd(PO₄)₇:Eu,Mn materials.
View Article and Find Full Text PDFA new 3D tubular zinc phosphite, Zn (C H N ) (HPO ) ⋅H O (1), incorporating a tetradentate organic ligand was synthesized under hydro(solvo)thermal conditions and structurally characterized by single-crystal X-ray diffraction. Compound 1 is the first example of inorganic zincophosphite chains being interlinked through 1,2,4,5-tetrakis(imidazol-1-ylmethyl)benzene to form a tubular porous framework with unusual organic-inorganic hybrid channels. The thermal and chemical stabilities, high capacity for CO adsorption compared to that for N adsorption, and interesting optical properties of LED devices fabricated using this compound were also studied.
View Article and Find Full Text PDFThis research is the first example of a hybrid metal phosphate that undergoes an SCSC structural transformation and provides a new route for the synthesis of organic-inorganic hybrid materials with high stabilities via the introduction of nitrogen-donor ligands into a metal-phosphate system. The synthesis, structural diversity, and thermal and chemical stabilities are also discussed.
View Article and Find Full Text PDFRandom laser actions in ultraviolet and visible regions have been demonstrated based on the composites consisting of bio-inspired diatom frustules. Owing to the low optical loss derived from porous network of diatom structures, we report wide spectrum range random lasers arising from GaN film and Rh6G dye via using biological diatoms as scattering centers. Interestingly, both ultraviolet and visible-range random laser actions with very sharp peaks can be easily obtained, with the average length of optics cavity closed to the average size of diatom frustules in both cases, indicating the excellent optical confinement of diatom frustules.
View Article and Find Full Text PDFA new zinc phosphite exhibited remarkable structural transformations upon heat stimulation to convert into a dehydrated form (NCU-2a) and a new structure, NCU-2b. The gas adsorption properties of the materials as well as the luminescence properties of LED devices fabricated using these materials were also investigated.
View Article and Find Full Text PDFAn organic-inorganic hybrid zinc phosphate with 28-ring channels was synthesized by use of an organic ligand instead of organic amine template under a hydro(solvo)thermal condition. This crystalline zinc phosphate contains large channels constructed from 28 zinc and phosphate tetrahedral units. The walls of the channels consist of two types of zincophosphate chains, in which the Zn atoms are coordinated by 2,4,5-tri(4-pyridyl)-imidazole ligands as pendent groups.
View Article and Find Full Text PDFQuasi-periodic structures of natural biomaterial membranes have great potentials to serve as resonance cavities to generate ecological friendly optoelectronic devices with low cost. To achieve the first attempt for the illustration of the underlying principle, the Pieris canidia butterfly wing was embedded with ZnO nanoparticles. Quite interestingly, it is found that the bio-inspired quasi-single-mode random laser can be achieved by the assistance of the skeleton of the membrane, in which ZnO nanoparticles act as emitting gain media.
View Article and Find Full Text PDFNanostructured zinc phosphite templated by cetyltrimethylammonium (CTA(+)) cations was synthesized using a hydro(solvo)thermal method. This is the first example of a crystalline metal phosphite containing long carbon tails of the CTA(+) ions as templates in its structure, as is structurally characterized by single-crystal X-ray diffraction. The 2D inorganic structures with 4.
View Article and Find Full Text PDF