Publications by authors named "Tsung-Yang Liow"

Silicon photonics integrated circuits (Si-PIC) with well-established active and passive building elements are progressing towards large-scale commercialization in optical communications and high speed optical interconnects applications. However, current Si-PICs do not have memory capabilities, in particular, the non-volatile memory functionality for energy efficient data storage. Here, we propose an electrically programmable, multi-level non-volatile photonics memory cell (PMC) fabricated by standard complementary-metal-oxide-semiconductor (CMOS) compatible processes.

View Article and Find Full Text PDF

Inversely tapered spot size converter (SSC) is widely used to connect silicon waveguide with fiber in silicon photonics. However, the tapered structure may cause polarization rotation and further generate interference fluctuation in the transmission spectrum even of a straight waveguide. We analyzed the light propagation in a straight waveguide with SSC at the both ends with coupling matrix and transmission matrix methods.

View Article and Find Full Text PDF

In this paper, we demonstrate a compact electrically pumped distributed-feedback hybrid III-V/silicon laser with laterally coupled Bragg grating for the first time to the best of our knowledge. The hybrid laser structure consists of AlGaInAs/InP multi-quantum-well gain layers on top of a laterally corrugated silicon waveguide patterned on a silicon on insulator (SOI) substrate. A pair of surface couplers is integrated at the two ends of the silicon waveguide for the optical coupling and characterization of the ouput light.

View Article and Find Full Text PDF

We demonstrate electrically pumped two-section mode locked quantum well lasers emitting at the L-band of telecommunication wavelength on silicon utilizing die to wafer bonding techniques. The mode locked lasers generate pulses at a repetition frequency of 30 GHz with signal to noise ratio above 30 dB and 1 mW average output power per facet. Optical injection-locking scheme was used to improve the noise properties of the pulse trains of passively mode-locked laser.

View Article and Find Full Text PDF

We present a low-loss and small-footprint polarization rotator based on mode evolution. The polarization rotator is composed of an asymmetric-rib waveguide and a tapered waveguide, both of which consist only of a silicon core and a silica cladding. The rotator is fabricated under the same design rules as other device blocks, such as rib-waveguide phase shifters for photonic integration.

View Article and Find Full Text PDF

We proposed a microring resonator (MRR) enhanced photodetector (PD) structure. Resonance wavelength enhanced by the MRR amplifies the PD response. At L-band wavelengths, responsivity was doubled for an ultra-short germanium PD of 4 µm employing the MRR structure.

View Article and Find Full Text PDF

Integrated semiconductor lasers on silicon are one of the most crucial devices to enable low-cost silicon photonic integrated circuits for high-bandwidth optic communications and interconnects. While optical amplifiers and lasers are typically realized in III-V waveguide structures, it is beneficial to have an integration approach which allows flexible and efficient coupling of light between III-V gain media and silicon waveguides. In this paper, we propose and demonstrate a novel fabrication technique and associated transition structure to realize integrated lasers without the constraints of other critical processing parameters such as the starting silicon layer thicknesses.

View Article and Find Full Text PDF

A silicon Mach-Zehnder Interferometer (MZI) optical modulator with a shield coplanar waveguide (CPW) transmission line electrode design was demonstrated. This shield-CPW electrode suppresses the signal distortion caused by the parasitic slot-line (SL) mode and improves the electrical bandwidth and the electro-optical (EO) bandwidth. With the shield-CPW electrodes and 5.

View Article and Find Full Text PDF

High-index-contrast (HIC) waveguide such as Si and Si3N4 has small mode size enabling compact integration. However, the coupling loss with single mode fiber is also remarkable owning to the mode mismatching. Therefore, mode size converter, as the interface between HIC waveguide and optical fiber, takes an important role in the field of integrated optics.

View Article and Find Full Text PDF

We demonstrated a low-loss CMOS-compatible multi-layer platform using monolithic back-end-of-line (BEOL) integration. 0.8dB/cm propagation loss is measured for the PECVD Si₃N₄ waveguide at 1580nm wavelength.

View Article and Find Full Text PDF

We demonstrate silicon-based traveling-wave photodetector arrays (Si-TWPDAs) with parallel optical feeding by integrating multiple Germanium photodetectors. Such Si-TWPDAs feature the merit of high optical saturation power with remaining the large operation bandwidth. The impedance-matched traveling-wave electrode design takes into account the individual Ge photodetector loading effect.

View Article and Find Full Text PDF

We propose a novel three-dimensional (3D) monolithic optoelectronic integration platform. Such platform integrates both electrical and photonic devices in a bulk silicon wafer, which eliminates the high-cost silicon-on-insulator (SOI) wafer and is more suitable for process requirements of electronic and photonic integrated circuits (ICs). For proof-of-concept, we demonstrate a three-dimensional photodetector and WDM receiver system.

View Article and Find Full Text PDF

A low-loss high-speed silicon in-phase (I) quadrature (Q) modulator is designed, fabricated and characterized. The fabricated IQ modulator has a low passive optical loss of 9 dB in C and L bands. Using the modulator, differential quadrature phase-shift keying (DQPSK) transmission at 44.

View Article and Find Full Text PDF

We design and experimentally demonstrate 50 picoseconds (ps) low loss delay line on 300 nm SOI platform. The delay line unit consists of straight rib waveguide and strip bend section linked by a transition taper waveguide. Low propagation loss of ~0.

View Article and Find Full Text PDF

We demonstrate a silicon-based optoelectronic integrated circuit (OEIC) for label-free bio/chemical sensing application. Such on-chip OEIC sensor system consists of optical grating couplers for vertical light coupling into silicon waveguides, a thermal-tunable microring as a tunable filter, an exposed microring as an optical label-free sensor, and a Ge photodetector for a direct electrical readout. Different from the conventional wavelength-scanning method, we adopt low-cost broadband ASE light source, together with the on-chip tunable filter to generate sliced light source.

View Article and Find Full Text PDF

We investigate the performances of a silicon PN-junction Mach-Zehnder modulator for analog application. The slope efficiency and spurious-free dynamic range (SFDR) of such a modulator upon carrier depletion and carrier injection effects are characterized and compared. Input RF frequency-dependence measurements show that the depletion-type modulator is usually with ~20 dB ∙ Hz(2/3) higher SFDR comparing to the injection-type modulator, yet with an order-of-magnitude lower slope efficiency.

View Article and Find Full Text PDF

We observe that the cascaded typical Y junctions will introduce unwanted periodic fringes over the spectrum in practical systems when they link with multimode waveguides. To solve the problem, we design and experimentally demonstrate a wavelength insensitive multimode interferometer (MMI) based 3-dB splitter which has all the merits of Y-splitters such as polarization insensitivity and ultra-compactness. The splitter has a footprint of 1.

View Article and Find Full Text PDF

An ultra-compact broadband TE-pass polarizer was proposed and demonstrated on the silicon-on-insulator (SOI) platform, using the horizontal nanoplasmonic slot waveguide (HNSW). Detailed design principle was presented, taking advantage of the distinct confinement region of the TE and TM modes in the HNSW. TM mode cut-off could be achieved when waveguide width was below 210 nm.

View Article and Find Full Text PDF

We demonstrate silicon Mach-Zehnder Interferometer (MZI) optical modulator with 50.1-Gb/s data rate and 5.56 dB dynamic extinction ratios.

View Article and Find Full Text PDF

In this work, we demonstrate thermo-optical quasi-digital optical switch (q-DOS) using silicon microring resonator-coupled Mach-Zehnder interferometer. The optical transmission spectra show box-like response with 1-dB and 3-dB bandwidths of ~1.3 nm and ~1.

View Article and Find Full Text PDF

The bandwidth of planar waveguide grating couplers is theoretically investigated based on the rigorous grating theory. We observe that the bandwidth behavior is not only determined by the grating coupler intrinsic properties, but also affected by the fiber parameters such as position, beam waist and Numerical Aperture. The rigorous bandwidth formula is derived.

View Article and Find Full Text PDF

The 11-Gbps 80-km transmission performance of a zero-chirp silicon Mach-Zehnder modulator has been characterized. The zero-chirp characteristic of the silicon modulator is confirmed in the constellation measurement, and gives high tolerance both for positive and negative chromatic dispersion. A low-dispersion-penalty transmission up to 80 km using the 11-Gbps non return-to-zero on-off-keying format is confirmed via bit-error-rate measurements with a performance comparable to that of a commercial lithium-niobate modulator.

View Article and Find Full Text PDF

There has been great interest in the silicon platform as a material system for integrated photonics. A key challenge is the development of a low-power, low drive voltage, broadband modulator. Drive voltages at or below 1 Vpp are desirable for compatibility with CMOS processes.

View Article and Find Full Text PDF

We report a normal incidence Ge/Si avalanche photodiode with separate-absorption-charge-multiplication (SACM) structure by selective epitaxial growth. By proper design of charge and multiplication layers and by optimizing the electric field distribution in the depletion region to eliminate germanium impact-ionization at high gain, a high responsivity of 12 A/W and a large gain-bandwidth product of 310 GHz have been achieved at 1550 nm.

View Article and Find Full Text PDF

Based on different coherence properties of signal and noise, we measured the in-band optical signal-to-noise ratio using an integrated thermally tunable Mach-Zehnder optical delay interferometer on SOI platform. The experimental results exhibit errors smaller than 1 dB for signals with bit rate <40 Gbps over an OSNR range of 9~30 dB. The effects of the extinction ratio, noise equivalent bandwidth and arm length difference on the implementation of measurement are analyzed.

View Article and Find Full Text PDF