Publications by authors named "Tsung-Tsong Wu"

This paper presents numerical and experimental results on the level repulsion of gigahertz surface acoustic waves in an air/ST-cut quartz phononic structure with finite-depth holes. The colorful dispersion with the parameter of the in-plane (sagittal plane) ratio of polarization was adopted to determine the Rayleigh wave bandgap induced by the level repulsion. The results of numerical analyses showed that the frequency and width of the bandgap induced by the level repulsion strongly depend on the geometry of the air holes in the phononic structure.

View Article and Find Full Text PDF

This paper presents results on the numerical and experimental studies of focusing and waveguiding of the lowest anti-symmetric Lamb wave in micro-fabricated piezoelectric phononic plates. The phononic structure was based on an AT-cut quartz plate and consisted of a gradient-index phononic crystal (GRIN PC) lens and a linear phononic plate waveguide. The band structures of the square-latticed AT-cut quartz phononic crystal plates with different filling ratios were analyzed using the finite element method.

View Article and Find Full Text PDF
Phononic plate waves.

IEEE Trans Ultrason Ferroelectr Freq Control

October 2011

In the past two decades, phononic crystals (PCs) which consist of periodically arranged media have attracted considerable interest because of the existence of complete frequency band gaps and maneuverable band structures. Recently, Lamb waves in thin plates with PC structures have started to receive increasing attention for their potential applications in filters, resonators, and waveguides. This paper presents a review of recent works related to phononic plate waves which have recently been published by the authors and coworkers.

View Article and Find Full Text PDF

Using a passive wireless sensor to detect hydrogen can reach the goals of reducing cost and increasing the lifetime since the sensor can work without batteries. In this paper, a passive wireless hydrogen SAW sensor operating at room temperature has been achieved by combining a SAW tag and a resistive hydrogen sensor. The SAW tag is fabricated on a 128 degrees YX-LiNbO(3) substrate and its central frequency is 433 MHz.

View Article and Find Full Text PDF

A high-precision ultraviolet (UV) detector combining ZnO nanostructure and a dual delay line surface acoustic wave (SAW) oscillator system is presented. The UV detector is made of ZnO nanorods on a 128 degrees YX-LiNbO(3)-based two-port SAW oscillator. The ZnO nanorod synthesized by chemical solution method is used as a UV sensing material.

View Article and Find Full Text PDF

A surface acoustic wave (SAW) sensor with Pt coated ZnO nanorods as the selective layer has been investigated for hydrogen detection. The SAW sensor was fabricated based on a 128 degrees YX-LiNbO(3) substrate with a operating frequency of 145 MHz. A dual delay line configuration was adopted to eliminate external environmental fluctuations.

View Article and Find Full Text PDF

In this paper, we propose a Lamb wave source that is based on the resonant cavity of a phononic-crystal plate. The phononic-crystal plate is composed of tungsten cylinders that form square lattices in a silicon plate, and the resonant cavity is created by arranging defects inside the periodic structure. The dispersion, transmission, and displacement of Lamb waves are analyzed by the finite-difference time-domain (FDTD) method.

View Article and Find Full Text PDF

Based on Mindlin's piezoelectric plate theory and the plane wave expansion method, a formulation is proposed to study the frequency band gaps and dispersion relations of the lower-order Lamb waves in two-dimensional piezoelectric phononic plates. The method is applied to analyze the phononic plates composed of solid-solid and airsolid constituents with square and triangular lattices, respectively. Factors that influence the opening and width of the complete Lamb wave gaps are identified and discussed.

View Article and Find Full Text PDF

In this paper, we present a study on the existence of Bleustein-Gulyaev-Shimizu piezoelectric surface acoustic waves in a two-dimensional piezoelectric phononic crystal (zinc oxide, ZnO, and cadmium-sulfide, CdS) using the plane wave expansion method. In the configuration of ZnO (100)/CdS(100) phononic crystal, the calculated results show that this type of surface waves has higher acoustic wave velocities, high electromechanical coupling coefficients, and larger band gap width than those of the Rayleigh surface waves and pseudosurface waves. In addition, we find that the folded modes of the Bleustein-Gulyaev-Shimizu surface waves have higher coupling coefficients.

View Article and Find Full Text PDF

This paper aims at studying the band gap phenomena of three-dimensional phononic crystals using the finite difference time domain (FDTD) method and a PC cluster system. In the paper, Bloch's theorem is applied to the wave equation and to the boundary conditions of the periodic structure. We calculate the variations of displacements and take discrete Fourier transform to acquire the resonances of the structures.

View Article and Find Full Text PDF

Focused interdigital transducers (FIDTs) can generate surface acoustic wave (SAW) with high intensity and high beamwidth compression ratio. Owing to these features, they are very suitable to be used as the sources of microacoustic channels or waveguides in the near future. The focusing properties of FIDTs are dominated solely by their geometric shapes.

View Article and Find Full Text PDF

In this paper, we analyzed the temperature effect on two-dimensional phononic crystals. Bandgap variations of both of the bulk modes and surface modes due to changing of temperature in an air/quartz band structure from 0 to 50 degrees C were calculated and discussed. The results show that the elastic bandgaps can be enlarged or reduced by adjusting the temperature of the band structure.

View Article and Find Full Text PDF

In this paper, a formulation for calculating the effective permittivity of a piezoelectric layered SAW structure is given, and the exact frequency response of ZnO/diamond/Si-layered SAW is calculated. The effective permittivity and phase velocity dispersion of a ZnO/diamond/Si-layered half space are calculated and discussed. The frequency response of an unapodized SAW transducer is calculated, and the center frequency shift caused by the velocity dispersion is explained.

View Article and Find Full Text PDF