Synchrotron radiation can be used as a light source in X-ray microscopy to acquire a high-resolution image of a microscale object for tomography. However, numerous projections must be captured for a high-quality tomographic image to be reconstructed; thus, image acquisition is time consuming. Such dense imaging is not only expensive and time consuming but also results in the target receiving a large dose of radiation.
View Article and Find Full Text PDFMicroscopy by Achromatic X-rays With Emission of Laminar Light (MAXWELL) is a new X-ray/visible technique with attractive characteristics including isotropic resolution in all directions, large-volume imaging and high throughput. An ultrathin, laminar X-ray beam produced by a Wolter type I mirror irradiates the sample stimulating the emission of visible light by scintillating nanoparticles, captured by an optical system. Three-dimensional (3D) images are obtained by scanning the specimen with respect to the laminar beam.
View Article and Find Full Text PDFJ Synchrotron Radiat
September 2021
The new Brain Imaging Beamline (BIB) of the Taiwan Photon Source (TPS) has been commissioned and opened to users. The BIB and in particular its endstation are designed to take advantage of bright unmonochromatized synchrotron X-rays and target fast 3D imaging, ∼1 ms exposure time plus very high ∼0.3 µm spatial resolution.
View Article and Find Full Text PDFThe evolution of flight in feathered dinosaurs and early birds over millions of years required flight feathers whose architecture features hierarchical branches. While barb-based feather forms were investigated, feather shafts and vanes are understudied. Here, we take a multi-disciplinary approach to study their molecular control and bio-architectural organizations.
View Article and Find Full Text PDFDetermining the filtration function and biochemical status of kidney at the single glomerulus level remains hardly accessible, even from biopsies. Here, we provide evidence that IR spectro-microscopy is a suitable method to account for the filtration capacity of individual glomeruli along with related physio-pathological condition. A ∼4 μm voxel resolution 3D IR image reconstruction is built from consecutive tissue sections, thus, providing a 3D IR spectrum matrix of an individual glomerulus.
View Article and Find Full Text PDFUsing the excellent performances of a SACLA (RIKEN/HARIMA, Japan) X-ray free electron laser (X-FEL), coherent diffraction imaging (CDI) was used to detect individual liposome particles in water, with or without inserted doxorubicin nanorods. This was possible because of the electron density differences between the carrier, the liposome, and the drug. The result is important since liposome nanocarriers at present dominate drug delivery systems.
View Article and Find Full Text PDFHigh resolution synchrotron microtomography capable of revealing microvessels in three dimensional (3D) establishes distinct imaging markers of mouse kidney disease strongly associated to renal tubulointerstitial (TI) lesions and glomerulopathy. Two complementary mouse models of chronic kidney disease (CKD), unilateral ureteral obstruction (UUO) and focal segmental glomerulosclerosis (FSGS), were used and five candidates of unique 3D imaging markers were identified. Our characterization to differentially reflect the altered microvasculature of renal TI lesions and/or glomerulopathy demonstrated these image features can be used to differentiate the disease status and the possible cause therefore qualified as image markers.
View Article and Find Full Text PDF