Publications by authors named "Tsung-Ju Chen"

Detection of individual target cells among a large amount of blood cells is a major challenge in clinical diagnosis and laboratory protocols. Many researches show that two dimensional cells array technology can be incorporated into routine laboratory procedures for continuously and quantitatively measuring the dynamic behaviours of large number of living cells in parallel, while allowing other manipulations such as staining, rinsing, and even retrieval of targeted cells. In this study, we present a high-density cell self-assembly technology capable of quickly spreading over 300 000 cells to form a dense mono- to triple-layer cell arrangement in 5 min with minimal stacking of cells by the gentle incorporation of gravity and peripheral micro flow.

View Article and Find Full Text PDF

Cell alignment is a critical factor to govern cellular behavior and function for various tissue engineering applications ranging from cardiac to neural regeneration. In addition to physical geometry, strain is a crucial parameter to manipulate cellular alignment for functional tissue formation. In this paper, we introduce a simple approach to generate a range of gradient static strains without external mechanical control for the stimulation of cellular behavior within 3D biomimetic hydrogel microenvironments.

View Article and Find Full Text PDF

Unlabelled: In this study, we developed a feasible and reliable stretching platform combined with photolithography and microfluidic techniques to investigate the effect of directional tensile force and guiding microchannel on neural stem cell (NSC) behavior. Different stretching modes and culture conditions were conducted to investigate the mechanoresponse of NSCs on micropatterned substrate and to verify the effects of tension on NSCs maturation, axon sprouting, neurite outgrowth and orientation. From the results, we found that neurite extension and axon elongation were significantly enhanced and neurites were more directional orientated to parallel direction as stretching was experienced.

View Article and Find Full Text PDF

Single cell electroporation is one of the nonviral method which successfully allows transfection of exogenous macromolecules into individual living cell. We present localized cell membrane electroporation at single-cell level by using indium tin oxide (ITO) based transparent micro-electrodes chip with inverted microscope. A focused ion beam (FIB) technique has been successfully deployed to fabricate transparent ITO micro-electrodes with submicron gaps, which can generate more intense electric field to produce very localized cell membrane electroporation.

View Article and Find Full Text PDF