Publications by authors named "Tsung-Han Kuo"

Background: Animals exhibit a wide range of social behaviors, including positive actions that promote social cohesion and negative behaviors associated with asserting dominance. While these behaviors are often viewed as opposites, they can also exist independently or coexist in complex ways, necessitating further investigation into their interrelationships.

Results: To study the interplay between these two types of behaviors, we examined mouse social behaviors using resident-intruder assays and revealed a negative correlation between social aggression and prosocial allogrooming.

View Article and Find Full Text PDF

Aging is a multifaceted process characterized by the gradual decline of physiological functions and can be modulated by various internal and external factors. While social interactions have been shown to affect behaviors and physiology in different species, the impact of social partners on aging-related phenotypes and lifespan in mice remains understudied. To address this question, we investigated various aging-related traits and lifespan in two mouse strains, C57BL/6J and BALB/c, under two different housing conditions: mixed-strain and same-strain housing.

View Article and Find Full Text PDF

Fruit fly courtship behaviors composed of a series of actions have always been an important model for behavioral research. While most related studies have focused only on total courtship behaviors, specific courtship elements have often been underestimated. Identifying these courtship element details is extremely labor intensive and would largely benefit from an automatic recognition system.

View Article and Find Full Text PDF

Animals exhibit different extents of sexual dimorphism in a variety of phenotypes. Sex differences in longevity, one of the most complex life history traits, have also been reported. Although lifespan regulation has been studied extensively in the fruit fly, , the sex differences in lifespan have not been consistent in previous studies.

View Article and Find Full Text PDF

Introduction: Sex bias has been an issue in many biomedical fields, especially in neuroscience. In rodent research, many scientists only focused on male animals due to the belief that female estrous cycle gives rise to unacceptable, high levels of variance in the experiments. However, even though female sexual behaviors are well known to be regulated by estrous cycle, which effects on other non-sexual behaviors were not always consistent in previous reports.

View Article and Find Full Text PDF

D-serine has attracted increasing attention for its possible role in depression. L-4-Fluorophenylglycine (L-4FPG), an inhibitor of the neutral amino acid transporter ASCT1/2, has been shown to regulate extracellular D-serine levels. The present study aimed to explore the potential antidepressant effects of L-4FPG.

View Article and Find Full Text PDF

Social interactions play important roles in the modulation of behavior, physiology, and, potentially, lifespan. Although longevity has been studied extensively in different model organisms, due to the complexity of social environments, the social modulation of aging remains poorly investigated. The present study used the fruit fly, Drosophila melanogaster, as a model to study lifespan and stress resistance under different social conditions.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates the link between social hierarchy and memory performance in mice, finding that dominant mice exhibit better memory and associated brain activity compared to subordinate mice.
  • Researchers discovered that administering memory-enhancing drugs improved dominance in mice and confirmed similar memory advantages in preschool children with higher social ranks.
  • The findings suggest a significant relationship between memory abilities and social hierarchy in both mice and humans, providing insights that could influence preschool education strategies.
View Article and Find Full Text PDF

The importance of social interactions has been reported in a variety of animal species. In human and rodent models, social isolation is known to alter social behaviors and change anxiety or depression levels. During the coronavirus pandemic, although people could communicate with each other through other sensory cues, social touch was mostly prohibited under different levels of physical distancing policies.

View Article and Find Full Text PDF

Social hierarchy plays important roles in maintaining social structures. Despite similarity in concept, frameworks of human hierarchy have seldom been investigated in parallel with other animals. Moreover, the importance of subordination in hierarchical formation has been largely underestimated in previous research.

View Article and Find Full Text PDF

The concept of mammalian pheromones was established decades before the discovery of any bioactive ligands. Therefore, their molecular identity, native sources, and the meaning of their detection has been largely speculative. There has been recent success in identifying a variety of candidate mouse pheromones and other specialized odors.

View Article and Find Full Text PDF

During social interactions, an individual's behavior is largely governed by the subset of signals emitted by others. Discrimination of "self" from "other" regulates the territorial urine countermarking behavior of mice. To identify the cues for this social discrimination and understand how they are interpreted, we designed an olfactory-dependent countermarking assay.

View Article and Find Full Text PDF

Sensory perception can modulate aging and physiology across taxa. We found that perception of female sexual pheromones through a specific gustatory receptor expressed in a subset of foreleg neurons in male fruit flies, Drosophila melanogaster, rapidly and reversibly decreases fat stores, reduces resistance to starvation, and limits life span. Neurons that express the reward-mediating neuropeptide F are also required for pheromone effects.

View Article and Find Full Text PDF

Dietary composition is known to have profound effects on many aspects of animal physiology, including lifespan, general health, and reproductive potential. We have previously shown that aging and insulin signaling significantly influence the composition and sexual attractiveness of Drosophila melanogaster female cuticular hydrocarbons (CHCs), some of which are known to be sex pheromones. Because diet is intimately linked to aging and to the activity of nutrient-sensing pathways, we asked how diet affects female CHCs and attractiveness.

View Article and Find Full Text PDF

Sexually attractive characteristics are often thought to reflect an individual's condition or reproductive potential, but the underlying molecular mechanisms through which they do so are generally unknown. Insulin/insulin-like growth factor signaling (IIS) is known to modulate aging, reproduction, and stress resistance in several species and to contribute to variability of these traits in natural populations. Here we show that IIS determines sexual attractiveness in Drosophila through transcriptional regulation of genes involved in the production of cuticular hydrocarbons (CHC), many of which function as pheromones.

View Article and Find Full Text PDF

Attractiveness is a major component of sexual selection that is dependent on sexual characteristics, such as pheromone production, which often reflect an individual's fitness and reproductive potential. Aging is a process that results in a steady decline in survival and reproductive output, yet little is known about its effect on specific aspects of attractiveness. In this report we asked how aging impacts pheromone production and sexual attractiveness in Drosophila melanogaster.

View Article and Find Full Text PDF

Sensory systems provide organisms from bacteria to humans with the ability to interact with the world. Numerous senses have evolved that allow animals to detect and decode cues from sources in both their external and internal environments. Recent advances in understanding the central mechanisms by which the brains of simple organisms evaluate different cues and initiate behavioral decisions, coupled with observations that sensory manipulations are capable of altering organismal lifespan, have opened the door for powerful new research into aging.

View Article and Find Full Text PDF

For nearly all life forms, perceptual systems provide access to a host of environmental cues, including the availability of food and mates as well as the presence of disease and predators. Presumably, individuals use this information to assess the current and future states of the environment and to enact appropriate developmental, behavioral, and regulatory decisions. Recent work using the nematode worm, Caenorhabditis elegans, and the fruit fly, Drosophila melanogaster, has established that aging is subject to modulation through neurosensory systems and that this regulation is evolutionarily conserved.

View Article and Find Full Text PDF