Comp Biochem Physiol A Mol Integr Physiol
June 2010
The simple photoreceptors Ip-1 and Ip-2 are intrinsically light-sensitive neurons that exist in the abdominal ganglion of the sea slug Onchidium verruculatum. Using isolated ganglia and semi-intact or intact animal preparations, the present studies examined the light-sensing and physiological roles of Ip-1 and Ip-2 cells, which respond jointly to light by inducing a slow hyperpolarizing receptor potential. First, the synaptic inputs received by Ip-1 and Ip-2 and the axonal branches arising from their cell bodies were investigated.
View Article and Find Full Text PDFSimple photoreceptors, namely intrinsically light-sensitive neurons without microvilli and/or cilia, have long been known to exist in the central ganglia of crayfish, Aplysia, Onchidium, and Helix. These simple photoreceptors are not only first-order photosensory cells, but also second-order neurons (interneurons), relaying several kinds of sensory synaptic inputs. Another important issue is that the photoresponses of these simple photoreceptors show very slow kinetics and little adaptation.
View Article and Find Full Text PDFSimple photoreceptors, namely photoresponsive neurons without microvilli and/or cilia have long been known in the central ganglion of crayfish, Aplysia, Onchidium and Helix. Recently, similar simple photoreceptors, ipRGCs were discovered in the mammalian retinas. A characteristic common to all of their photoreceptor potentials shows a slow kinetics and little adaptation, contrasting with the fast and adaptive photoresponses in eye photoreceptors.
View Article and Find Full Text PDFSimple photoreceptors, namely photoresponsive neurons, designated as A-P-1, Es-1, Ip-2 and Ip-1, exist in the sea slug Onchidium ganglion. Previous works has shown that, of these, Ip-2 and Ip-1 respond to light with a hyperpolarizing receptor potential, caused by the opening of light-dependent, cGMP-gated K+ channels, whereas A-P-1 and Es-1 are depolarized by light, owing to the closing of the same K+ channels. The present study of Ip-2 or Ip-1 cells was undertaken to identify the G-proteins that couple light to the activation of guanylate cyclase (GC), thereby leading to the opening of K+ channels and the consequent hyperpolarizing photocurrents.
View Article and Find Full Text PDFLight-dependent K(+) channels underlying a hyperpolarizing response of one extraocular (simple) photoreceptor, Ip-2 cell, in the marine mollusc Onchidium ganglion were examined using cell-attached and inside-out patch-clamp techniques. A previous report (Gotow, T., T.
View Article and Find Full Text PDF