Publications by authors named "Tsui-Shan Wei"

Background: Peripheral innate immune response may induce sickness behavior through activating microglia, excessive cytokines production, and neuroinflammation. Dexmedetomidine (Dex) has anti-inflammatory effect. We investigated the effects of Dex on lipopolysaccharide (LPS)-induced neuroinflammation and sickness behavior in mice.

View Article and Find Full Text PDF

Background: Cardiovascular disease is the major cause of death in patients with end-staged kidney disease (ESRD). Most ESRD patients have systemic inflammation, and increasing the risk of cardiovascular event. Endotoxin derived from lipopolysaccharide of Gram negative bacteria accounts for 70% of intestinal bacteria, leading to release of proinflammatory cytokines and negative cardiovascular effect.

View Article and Find Full Text PDF

Excessive production of cytokines by microglia may cause cognitive dysfunction and long-lasting behavioral changes. Activating the peripheral innate immune system stimulates cytokine secretion in the central nervous system, which modulates cognitive function. Histone deacetylases (HDACs) modulate cytokine synthesis and release.

View Article and Find Full Text PDF

CD200 belongs to cell adhesion molecules of the immunoglobulin superfamily. It lacks intracellular signaling motifs and exerts immunosuppressive effect in various tissues. We have reported previously that CD200 is predominantly associated with the capillary network in the alveolar septum of adult rats.

View Article and Find Full Text PDF

Background: Interleukin (IL)-19, a member of the IL-10 cytokine family, is involved in keratinocyte proliferation in psoriasis.

Objectives: We investigated the role of IL-19 in the wound-healing process in vivo and in vitro.

Methods: Two full-thickness circular wounds (4mm in diameter) were punched into the skin of BALB/C mice.

View Article and Find Full Text PDF

In vivo and in vitro studies have clearly demonstrated that signaling mediated by the interaction of CD200 and its cognate receptor, CD200R, results in an attenuation of inflammatory or autoimmune responses through multiple mechanisms. The present results have shown a differential expression of CD200 in the respiratory tract of intact rats. Along the respiratory passage, CD200 was specifically distributed at the bronchiolar epithelia with intense CD200 immunoreactivity localized at the apical surface of some ciliated epithelial cells; only a limited expression was detected on the Clara cells extending into the alveolar duct.

View Article and Find Full Text PDF