Publications by authors named "Tsuga H"

Adenosine and ATP/UTP are main components of the purinergic system that modulate cellular and tissue functions via specific adenosine and P2 receptors, respectively. Here, we explored the possibility that A(1) adenosine receptor (A(1)R) and P2Y(2) receptor (P2Y(2)R) form heterodimers with novel pharmacological properties. Coimmunoprecipitation showed these receptors directly associate in A(1)R/P2Y(2)R-cotransfected HEK293T cells.

View Article and Find Full Text PDF

It is now well accepted that G protein-coupled receptors (GPCRs) can be directly associated, as either homo- or hetero-oligomers, to alter their functions. G protein-coupled purinergic receptors, classified as adenosine receptors, and P2Y receptors (ATP receptors) are also found to oligomerize each other to alter their pharmacology. Specifically, adenosine receptor of A1 subtype (A1R) is able to form a heteromeric complex with P2Y receptor of P2Y1 type (P2Y1R) either in heterologously transfected cells or in rat brain tissues, as demonstrated by coimmunoprecipitation or bioluminescence resonance energy transfer methods in addition to double immunocytochemistry.

View Article and Find Full Text PDF

The organic solvent toluene is used widely in industry and is toxic to the central nervous system (CNS). To clarify the mechanisms of CNS toxicity following toluene exposure, especially with respect to the G protein-coupling of receptors, we determined the effects of toluene on the activation of Gi by stimulating human muscarinic acetylcholine receptor m2 subtypes (hm2 receptors) expressed in Chinese hamster ovary (CHO) cells. We first examined whether toluene affects the inhibition of adenylyl cyclase by Gi.

View Article and Find Full Text PDF

Desensitization of the cardiac muscarinic K+ channel was studied in cultured neonatal rat atrial cells and in Chinese hamster ovary (CHO) cells transfected with muscarinic receptor (HM(2)), G protein-coupled inward rectifying K+ channels 1 and 4, and G protein-coupled receptor kinase 2. In atrial cells incubated in 10 microM carbachol for 24 h, channel activity in cell-attached patches was substantially reduced as a result of long-term desensitization. The long-term desensitization was also observed in CHO cells transfected with the wild-type receptor and receptor kinase (as well as the channel).

View Article and Find Full Text PDF

Changes in the binding affinity of the muscarinic acetylcholine receptor agonist carbamylcholine were determined in membranes isolated from the brains of rats exposed to toluene at concentrations of 500-2,000 ppm for 6 h. Membrane fractions of the frontal cortex and hippocampus were prepared and agonist-binding affinities were determined by measuring the displacement of [3H]N-methyl scopolamine-binding activity by carbamylcholine. In the frontal cortex, the affinity of high-affinity carbamylcholine binding was reduced following exposure to toluene at a concentration of 1000 ppm or higher.

View Article and Find Full Text PDF

We determined the effects of toluene exposure on activation or inhibition of adenylyl cyclase by stimulating human beta2-adrenergic receptors (beta2-AR) and muscarinic acetylcholine receptor (mAChR) m2 subtypes, respectively, expressed in CHO cells. The formation of cAMP via beta2-AR stimulation was slightly but not significantly facilitated in the presence of 3.7 microM toluene.

View Article and Find Full Text PDF

We investigated the regulation by intracellular Ca2+ of agonist-induced sequestration of Gq protein-coupled histamine H1 receptors in human U373 MG astrocytoma cells. Histamine-induced sequestration of H1 receptors from the cell surface membrane was detected as the loss of [3H]mepyramine binding sites on intact cells accessible to the hydrophilic H1-receptor antagonist pirdonium. The changes in the pirdonium-sensitive binding of [3H]mepyramine were mirrored by changes in the subcellular distribution of H1 receptors detected by sucrose density gradient centrifugation.

View Article and Find Full Text PDF

Desensitization of human muscarinic acetylcholine receptor m2 subtypes (hm2 receptors) stably expressed in chinese hamster ovary cells was measured as decreases in the carbamylcholine-stimulated [35S]GTPgammaS binding activity in membrane preparations after pre-treatment of cells with carbamylcholine. The extent of carbamylcholine-stimulated [35S]GTPgammaS binding activity was found to decrease to 64% following pretreatment of cells with 10 microM carbamylcholine for 30 min, and under the same conditions 51-59% of hm2 receptors were sequestered/internalized as assessed by decreases in the [3H]N-methylscopolamine binding activity on the cell surface. A similar reduction in the carbamylcholine-stimulated [35S]GTPgammaS binding activity was observed by pretreatment of cells with 5 nM propylbenzylylcholine mustard, which irreversibly bound to and inactivated 58% of the hm2 receptors.

View Article and Find Full Text PDF

1. The cardiac muscarinic receptor-K+ channel system was reconstructed in Chinese hamster ovary (CHO) cells by transfecting the cells with the various components of the system. The activity of the muscarinic K+ channel was measured with the cell-attached configuration of the patch clamp technique.

View Article and Find Full Text PDF

Internalization and down-regulation of human muscarinic acetylcholine m2 receptors (hm2 receptors) and a hm2 receptor mutant lacking a central part of the third intracellular loop (I3-del m2 receptor) were examined in Chinese hamster ovary (CHO-K1) cells stably expressing these receptors and G protein-coupled receptor kinase 2 (GRK2). Agonist-induced internalization of up to 80-90% of hm2 receptors was demonstrated by measuring loss of [3H]N-methylscopolamine binding sites from the cell surface, and transfer of [3H]quinuclidinyl benzilate binding sites from the plasma membrane into the light-vesicle fractions separated by sucrose density gradient centrifugation. Additionally, translocation of hm2 receptors with endocytic vesicles were visualized by immunofluorescence confocal microscopy.

View Article and Find Full Text PDF

Sequestration of porcine muscarinic acetylcholine receptor m2 subtypes (m2 receptors) expressed in COS-7 cells is facilitated by coexpression of G protein-coupled receptor kinases 2 (GRK2). We examined the effect of coexpression of GRK2, GRK4 delta, GRK5 and GRK6 on sequestration of human m1-m5 receptors expressed in COS-7 cells, which was assessed as loss of [3H]N-methylscopolamine binding activity from the cell surface. Sequestration of m4 receptors as well as m2 receptors was facilitated by coexpression of GRK2 and attenuated by coexpression of the dominant negative form of GRK2 (DN-GRK2).

View Article and Find Full Text PDF

Agonist- or light-dependent phosphorylation of muscarinic acetylcholine receptor m2 subtypes (m2 receptors) or rhodopsin by G protein-coupled receptor kinase 2 (GRK2) was found to be inhibited by calmodulin in a Ca2+-dependent manner. The phosphorylation was fully inhibited in the absence of G protein betagamma subunits and partially inhibited in the presence of betagamma subunits. The dose-response curve for stimulation by betagamma subunits of the m2 and rhodopsin phosphorylation was shifted to the higher concentration of betagamma subunits by addition of Ca2+-calmodulin.

View Article and Find Full Text PDF

The short (D2S) and long (D2L) isoforms of dopamine D2 receptors were stably expressed in Chinese hamster ovary cells, and dopamine-induced sequestration was examined by measuring the loss of binding of the hydrophilic ligand [3H]sulpiride from the cell surface. Dopamine treatment of Chinese hamster ovary cells expressing D2S for 30 min at 37 degrees caused a 43.8 +/- 3.

View Article and Find Full Text PDF

1. Carbachol-induced homologous desensitization of the secretory response was investigated by transfecting RBL-2H3 cells with cDNA encoding the human m3 muscarinic acetylcholine receptor (RBL-m3). 2.

View Article and Find Full Text PDF

Sequestration of m2 receptors (muscarinic acetylcholine receptor m2 subtypes), which was assessed as loss of N-[3H]methylscopolamine ([3H]NMS) binding activity from the cell surface, was examined in COS 7 and BHK-21 cells that had been transfected with expression vectors encoding the m2 receptor and, independently, vectors encoding a G protein-coupled receptor kinase (GRK2) (beta-adrenergic receptor kinase 1) or a GRK2 dominant-negative mutant (DN-GRK2). The sequestration of m2 receptors became apparent when the cells were treated with 10(-5) M or higher concentrations of carbamylcholine. In this case, approximately 40% or 20-25% of the [3H]NMS binding sites on COS 7 or BHK-21 cells, respectively, were sequestered with a half-life of 15-25 min.

View Article and Find Full Text PDF