Publications by authors named "Tsuey Chyi S Tam"

The unliganded tetrameric Hb S has axial and lateral contacts with neighbors and can polymerize in solution. Novel recombinants of Hb S with single amino acid substitutions at the putative axial (recombinant Hb (rHb) (βE6V/αH20R) and rHb (βE6V/αH20Q)) or lateral (rHb (βE6V/αH50Q)) or double amino acid substitutions at both the putative axial and lateral (rHb (βE6V/αH20R/αH50Q) and rHb (βE6V/αH20Q/αH50Q)) contact sites were expressed in Escherichia coli and purified for structural and functional studies. The (1)H NMR spectra of the CO and deoxy forms of these mutants indicate that substitutions at either αHis-20 or αHis-50 do not change the subunit interfaces or the heme pockets of the proteins.

View Article and Find Full Text PDF

The oxygen affinity of woolly mammoth hemoglobin (rHb WM) is less affected by temperature change than that of Asian elephant hemoglobin (rHb AE) or human normal adult hemoglobin (Hb A). We report here a biochemical-biophysical study of Hb A, rHb AE, rHb WM, and three rHb WM mutants with amino acid substitutions at β/δ101 (β/δ101Gln→Glu, Lys, or Asp) plus a double and a triple mutant, designed to clarify the role of the β/δ101 residue. The β/δ101Gln residue is important for responding to allosteric effectors, such as phosphate, inositol hexaphosphate (IHP), and chloride.

View Article and Find Full Text PDF

The E11 valine in the distal heme pocket of either the α- or β-subunit of human adult hemoglobin (Hb A) was replaced by leucine, isoleucine, or phenylalanine. Recombinant proteins were expressed in Escherichia coli and purified for structural and functional studies. (1)H NMR spectra were obtained for the CO and deoxy forms of Hb A and the mutants.

View Article and Find Full Text PDF

This study is aimed at investigating the molecular basis of environmental adaptation of woolly mammoth hemoglobin (Hb) to the harsh thermal conditions of the Pleistocene ice ages. To this end, we have carried out a comparative biochemical-biophysical characterization of the structural and functional properties of recombinant hemoglobins (rHb) from woolly mammoth (rHb WM) and Asian elephant (rHb AE) in relation to human hemoglobins Hb A and Hb A(2) (a minor component of human blood). We have obtained oxygen equilibrium curves and calculated O(2) affinities, Bohr effects, and the apparent heat of oxygenation (ΔH) in the presence and absence of allosteric effectors [inorganic phosphate and inositol hexaphosphate (IHP)].

View Article and Find Full Text PDF

Four recombinant mutants of human fetal hemoglobin [Hb F (alpha2gamma2)] with amino acid substitutions at the position 43 of the gamma-chain, rHb (gammaD43L), rHb (gammaD43E), rHb (gammaD43W), and rHb (gammaD43R), have been expressed in our Escherichia coli expression system and used to investigate their inhibitory effect on the polymerization of deoxygenated sickle cell hemoglobin (Hb S). Oxygen-binding studies show that rHb (gammaD43E), rHb (gammaD43W), and rHb (gammaD43R) exhibit higher oxygen affinity than human normal adult hemoglobin (Hb A), Hb F, or rHb (gammaD43L), and all four rHbs are cooperative in binding O2. Proton nuclear magnetic resonance (NMR) studies of these four rHbs indicate that the quaternary and tertiary structures around the heme pockets are similar to those of Hb F in both deoxy (T) and liganded (R) states.

View Article and Find Full Text PDF

We investigated the global distribution of methylaccepting proteins in lymphoblastoid cells by two-dimensional (2-D) gel electrophoresis. The 2-D electrophoreograms of normal and hypo-methylation (cells grown with a methyltransferase inhibitor adenosine dialdehyde) protein extracts did not exhibit significant differences. However, in vitro methylation of the hypomethylated extracts in the presence of the methyl-group donor S-adenosyl-[methyl-3H]-methionine revealed close to a hundred signals.

View Article and Find Full Text PDF

Type III protein-arginine methyltransferase from the yeast Saccharomyces cerevisiae (RMT2) was expressed in Escherichia coli and purified to apparent homogeneity. The cytosolic, ribosomal, and ribosome salt wash fractions from yeast cells lacking RMT2 were used as substrates for the recombinant RMT2. Using S-adenosyl-l-methionine as co-substrate, RMT2 methylated a protein in the ribosome salt wash fraction.

View Article and Find Full Text PDF