Although lenalidomide is an essential treatment for multiple myeloma (MM), skin rashes are a common adverse event. This retrospective study aimed to examine the association between skin rash development during lenalidomide treatment and the prognosis of relapsed/refractory MM. All patients who received lenalidomide at 10 hospitals between July 2009 and December 2015 were included in the study.
View Article and Find Full Text PDFIntroduction: Cefmetazole (CMZ), an antibiotic with limited international distribution, is recommended by the Tokyo Guidelines 2018 (TG18) for non-severe cases of acute cholangitis (AC). However, the risk factors for CMZ-non-susceptible (CMZ-NS) bacteremia in AC remain unclear. Here, we aimed to investigate the risk factors for CMZ-NS bacteremia and evaluate mortality in patients with AC.
View Article and Find Full Text PDFSomatic hypermutation (SHM) is necessary for Ab diversification and involves error-prone DNA repair of activation-induced cytidine deaminase-induced lesions in germinal center (GC) B cells but can also cause genomic instability. GC B cells express low levels of the DNA repair protein apurinic/apyrimidinic (AP) endonuclease (APE)1 and high levels of its homolog APE2. Reduced SHM in APE2-deficient mice suggests that APE2 promotes SHM, but these GC B cells also exhibit reduced proliferation that could impact mutation frequency.
View Article and Find Full Text PDFThis study aimed to clarify the details of outpatient oral antimicrobial use (AMU) at a Japanese community hospital and investigate the influence of the current inpatient-based antimicrobial stewardship (AS) on outpatients. A repeated cross-sectional study was conducted in Komaki City Hospital. Data on patients, physicians, and oral antibiotics were collected in October 2013, 2016, and 2019, and appropriateness of treatment and surgical antimicrobial prophylaxis (SAP) was evaluated.
View Article and Find Full Text PDFThe maintenance of genome integrity and fidelity is vital for the proper function and survival of all organisms. Recent studies have revealed that APE2 is required to activate an ATR-Chk1 DNA damage response (DDR) pathway in response to oxidative stress and a defined DNA single-strand break (SSB) in egg extracts. However, it remains unclear whether APE2 is a general regulator of the DDR pathway in mammalian cells.
View Article and Find Full Text PDFMultiple sclerosis (MS), the most prevalent inflammatory disease of the central nervous system (CNS), is characterized by damaged to myelin sheaths and oligodendrocytes. Because MS patients have variable clinical courses and disease severities, it is important to identify biomarkers that predict disease activity and severity. In this study, we assessed the frequencies of serum autoantibodies against mature oligodendrocytes in MS patients using a tissue-based immunofluorescence assay (IFA) to determine whether anti-oligodendrocyte antibodies are associated with the clinical features of MS patients and whether they might be a biomarker to assess CNS tissue damage in MS patients.
View Article and Find Full Text PDF8-Oxoguanine (8-oxoG), a major oxidative base lesion, is highly accumulated in Alzheimer's disease (AD) brains during the pathogenic process. MTH1 hydrolyzes 8-oxo-dGTP to 8-oxo-dGMP, thereby avoiding 8-oxo-dG incorporation into DNA. 8-OxoG DNA glycosylase-1 (OGG1) excises 8-oxoG paired with cytosine in DNA, thereby minimizing 8-oxoG accumulation in DNA.
View Article and Find Full Text PDFCisplatin chemotherapy is standard care for many cancers but is toxic to the kidneys. How this toxicity occurs is uncertain. In this study, we identified apurinic/apyrimidinic endonuclease 2 (APE2) as a critical molecule upregulated in the proximal tubule cells (PTC) following cisplatin-induced nuclear DNA and mitochondrial DNA damage in cisplatin-treated C57B6J mice.
View Article and Find Full Text PDFInosine triphosphate pyrophosphatase (ITPA) hydrolyzes inosine triphosphate (ITP) and other deaminated purine nucleotides to the corresponding nucleoside monophosphates. In humans, ITPA deficiency causes severe encephalopathy with epileptic seizure, microcephaly, and developmental retardation. In this study, we established neural stem cell-specific Itpa-conditional KO mice (Itpa-cKO mice) to clarify the effects of ITPA deficiency on the neural system.
View Article and Find Full Text PDFIn mammals, including humans, MTH1 with 8-oxo-dGTPase and OGG1 with 8-oxoguanine DNA glycosylase minimize 8-oxoguanine accumulation in genomic DNA. We investigated age-related alterations in behavior, 8-oxoguanine levels, and neurogenesis in the brains of Mth1/Ogg1-double knockout (TO-DKO), Ogg1-knockout, and human MTH1-transgenic (hMTH1-Tg) mice. Spontaneous locomotor activity was significantly decreased in wild-type mice with age, and females consistently exhibited higher locomotor activity than males.
View Article and Find Full Text PDFObjective: To identify novel autoantibodies for neuropathic pain (NeP).
Methods: We screened autoantibodies that selectively bind to mouse unmyelinated C-fiber type dorsal root ganglion (DRG) neurons using tissue-based indirect immunofluorescence assays (IFA) with sera from 110 NeP patients with various inflammatory and allergic neurologic diseases or other neuropathies, and 50 controls without NeP including 20 healthy subjects and 30 patients with neurodegenerative diseases or systemic inflammatory diseases. IgG purified from IFA-positive patients' sera was subjected to Western blotting (WB) and immunoprecipitation (IP) using mouse DRG lysates.
2-Oxoadenosine (2-oxo-Ado), an oxidized form of adenosine, is cytotoxic and induces growth arrest and cell death, which has potential as an anti-cancer drug. However, it is not well understood how 2-oxo-Ado exerts its cytotoxicity. We examined the effects of 2-oxo-Ado on non-tumour cells, namely immortalized mouse embryonic fibroblast lines, and investigated mechanisms by which 2-oxo-Ado exerts its cytotoxicity.
View Article and Find Full Text PDFAlterations in the apoptosis of immune cells have been associated with autoimmunity. Here, we have identified a homozygous missense mutation in the gene encoding the base excision repair enzyme Nei endonuclease VIII-like 3 (NEIL3) that abolished enzymatic activity in 3 siblings from a consanguineous family. The NEIL3 mutation was associated with fatal recurrent infections, severe autoimmunity, hypogammaglobulinemia, and impaired B cell function in these individuals.
View Article and Find Full Text PDFDeoxyinosine (dI) occurs in DNA either by oxidative deamination of a previously incorporated deoxyadenosine residue or by misincorporation of deoxyinosine triphosphate (dITP) from the nucleotide pool during replication. To exclude dITP from the pool, mammals possess specific hydrolysing enzymes, such as inosine triphosphatase (ITPA). Previous studies have shown that deficiency in ITPA results in cell growth suppression and DNA instability.
View Article and Find Full Text PDFGenomewide association studies have shown that a nonsynonymous single nucleotide polymorphism in PRKCH is associated with cerebral infarction and atherosclerosis-related complications. We examined the role of PKCη in lipid metabolism and atherosclerosis using apolipoprotein E-deficient (Apoe ) mice. PKCη expression was augmented in the aortas of mice with atherosclerosis and exclusively detected in MOMA2-positive macrophages within atherosclerotic lesions.
View Article and Find Full Text PDFp53-regulated caspase-independent cell death has been implicated in suppression of tumorigenesis, however, the regulating mechanisms are poorly understood. We previously reported that 8-oxoguanine (8-oxoG) accumulation in nuclear DNA (nDNA) and mitochondrial DNA triggers two distinct caspase-independent cell death through buildup of single-strand DNA breaks by MutY homolog (MUTYH), an adenine DNA glycosylase. One pathway depends on poly-ADP-ribose polymerase (PARP) and the other depends on calpains.
View Article and Find Full Text PDFActivation-induced cytidine deaminase (AID) initiates a process generating DNA mutations and breaks in germinal center (GC) B cells that are necessary for somatic hypermutation and class-switch recombination. GC B cells can "tolerate" DNA damage while rapidly proliferating because of partial suppression of the DNA damage response by BCL6. In this study, we develop a model to study the response of mouse GC B cells to endogenous DNA damage.
View Article and Find Full Text PDFSomatic hypermutation (SHM) of antibody variable region genes is initiated in germinal center B cells during an immune response by activation-induced cytidine deaminase (AID), which converts cytosines to uracils. During accurate repair in nonmutating cells, uracil is excised by uracil DNA glycosylase (UNG), leaving abasic sites that are incised by AP endonuclease (APE) to create single-strand breaks, and the correct nucleotide is reinserted by DNA polymerase β. During SHM, for unknown reasons, repair is error prone.
View Article and Find Full Text PDFThe Fosb gene encodes subunits of the activator protein-1 transcription factor complex. Two mature mRNAs, Fosb and ΔFosb, encoding full-length FOSB and ΔFOSB proteins respectively, are formed by alternative splicing of Fosb mRNA. Fosb products are expressed in several brain regions.
View Article and Find Full Text PDF8-Oxoguanine (8-oxoG), a common DNA lesion caused by reactive oxygen species, is associated with carcinogenesis and neurodegeneration. Although the mechanism by which 8-oxoG causes carcinogenesis is well understood, the mechanism by which it causes neurodegeneration is unknown. Here, we report that neurodegeneration is triggered by MUTYH-mediated excision repair of 8-oxoG-paired adenine.
View Article and Find Full Text PDFHuman PRUNE is thought to enhance the metastasis of tumor cells. We found that a hypothetical paralog of PRUNE, PRUNE2, binds to 8-oxo-GTP, an oxidized form of GTP. Hypothetical PRUNE2 gene consists of C9orf65 and BMCC1/BNIPXL, both of which are malignant tumor-associated genes.
View Article and Find Full Text PDFB cell development involves rapid cellular proliferation, gene rearrangements, selection, and differentiation, and it provides a powerful model to study DNA repair processes in vivo. Analysis of the contribution of the base excision repair pathway in lymphocyte development has been lacking primarily owing to the essential nature of this repair pathway. However, mice deficient for the base excision repair enzyme, apurinic/apyrimidinic endonuclease 2 (APE2) protein develop relatively normally, but they display defects in lymphopoiesis.
View Article and Find Full Text PDF