Publications by authors named "Tsubokawa H"

Depending on an animal's behavioral state, hippocampal CA1 pyramidal cells receive distinct patterns of excitatory and inhibitory synaptic inputs. The time-dependent changes in the frequencies of these inputs and the nonuniform distribution of voltage-gated channels lead to dynamic fluctuations in membrane conductance. In this study, using a whole-cell patch-clamp method, we attempted to record and analyze the frequency dependencies of membrane responsiveness in Wistar rat hippocampal CA1 pyramidal cells following noise current injection directly into dendrites and somata under pharmacological blockade of all synaptic inputs.

View Article and Find Full Text PDF

This study shows the modification of the surface of polymer-layered glass substrates to form biofunctional micropatterns through femtosecond laser ablation in an aqueous solution. Domains of micrometer size on a substrate can be selectively converted from proteinphobic (resistant to protein adsorption) to proteinphilic, allowing patterning of protein features under physiological aqueous conditions. When femtosecond laser pulses (800 nm, 1 kHz, 200-500 nJ per pulse) were focused on and scanned on the substrate, which was glass covered with the proteinphobic polymer 2-methacryloyloxyethylphosphorylcholine (MPC), the surface became proteinphilic.

View Article and Find Full Text PDF

This article describes a novel laser-directed microfabrication method carried out in aqueous solution for the organization of cell networks on a platform. A femtosecond (fs) laser was applied to a platform culturing PC12, HeLa, or normal human astrocyte (NHA) cells to manipulate them and to facilitate mutual connections. By applying an fs-laser-induced impulsive force, cells were detached from their original location on the plate, and translocated onto microfabricated cell-adhesive domains that were surrounded with a cell-repellent perfluoroalkyl (R(f)) polymer.

View Article and Find Full Text PDF

We developed picosecond optical-pulse sources suitable for multiphoton microscopy based on mode-locked semiconductor lasers. Using external-cavity geometry, stable hybrid mode locking was achieved at a repetition rate of 500 MHz. Semiconductor optical amplifiers driven by synchronized electric pulses reached subharmonic optical-pulse repetition rates of 1-100 MHz.

View Article and Find Full Text PDF

Excess glutamate and Ca(2+) influx into neurons exacerbate brain damage such as ischemia. Astrocytes at the site of damage proliferate and attenuate the glutamate- and Ca(2+)-induced neuronal damage by removing excess glutamate and Ca(2+) through the N-methyl-D-aspartate (NMDA) glutamate receptor and the L-type Ca(2+) channel, respectively. Fibroblasts are commonly mobilized to the site of damage, probably supporting the restoration process.

View Article and Find Full Text PDF

We developed a novel scheme for two-photon fluorescence bioimaging. We generated supercontinuum (SC) light at wavelengths of 600 to 1200 nm with 774-nm light pulses from a compact turn-key semiconductor laser picosecond light pulse source that we developed. The supercontinuum light was sliced at around 1030- and 920-nm wavelengths and was amplified to kW-peak-power level using laboratory-made low-nonlinear-effects optical fiber amplifiers.

View Article and Find Full Text PDF

Endocannabinoids are released from neurons in activity-dependent manners, act retrogradely on presynaptic CB(1) cannabinoid receptors, and induce short-term or long-term suppression of transmitter release. The endocannabinoid release is triggered by postsynaptic activation of voltage-gated Ca(2+) channels and/or G(q)-coupled receptors such as group I metabotropic glutamate receptors (I-mGluRs) and M(1)/M(3) muscarinic receptors. However, the roles of NMDA receptors, which provide another pathway for Ca(2+) entry into neurons, in endocannabinoid signalling have been poorly understood.

View Article and Find Full Text PDF

Metabotropic receptors coupled to Gq/G11 family G proteins critically contribute to nervous system functions by modulating synaptic transmission, often facilitating excitation. We investigated the role of Gq/G11 family G proteins in the regulation of neuronal excitability in mice that selectively lack the alpha-subunits of Gq and G11, G alpha q and G alpha 11, respectively, in forebrain principal neurons. Surprisingly, mutant mice exhibited increased seizure susceptibility, and the activation of neuroprotective mechanisms was impaired.

View Article and Find Full Text PDF

Hippocalcin is a member of the neuronal calcium sensor (NCS) protein family that is highly expressed in hippocampal pyramidal cells and moderately expressed in the neurons of cerebral cortex, cerebellum and striatum. Here we examined the physiological roles of hippocalcin using targeted gene disruption. Hippocalcin-deficient (-/-) mice displayed no obvious structural abnormalities in the brain including hippocampal formation at the light microscopic level.

View Article and Find Full Text PDF

Endocannabinoids mediate retrograde signal and modulate transmission efficacy at various central synapses. Although endocannabinoid release is induced by either depolarization or activation of G(q/11)-coupled receptors, it is markedly enhanced by the coincidence of depolarization and receptor activation. Here we report that this coincidence is detected by phospholipase Cbeta1 (PLCbeta1) in hippocampal neurons.

View Article and Find Full Text PDF

To elucidate spatial and temporal profiles of the protein kinase C (PKC) activation in relation to neuronal functions including synaptic plasticity, we tried to detect PKC translocation in living brain slices. We first developed brain region-specific and inducible gammaPKC-GFP transgenic mice using a tetracycline (tet)-regulated system. In the transgenic mice, the expression of gammaPKC-GFP was region-specifically regulated by the promoter and abolished by the administration of doxycycline.

View Article and Find Full Text PDF

The cholinergic system in the CNS plays important roles in higher brain functions, primarily through muscarinic acetylcholine receptors. At cellular levels, muscarinic activation produces various effects including modulation of synaptic transmission. Here we report that muscarinic activation suppresses hippocampal inhibitory transmission through two distinct mechanisms, namely a cannabinoid-dependent and cannabinoid-independent mechanism.

View Article and Find Full Text PDF
Article Synopsis
  • The cholinergic system plays a vital role in learning and memory via muscarinic acetylcholine receptors (mAChRs), which have five different subtypes.
  • A recent study showed that acetylcholine can boost endocannabinoid signaling, acting retrogradely from postsynaptic to presynaptic neurons, prompting further investigation into this mechanism.
  • The study found that the cholinergic agonist carbachol enhances depolarization-induced suppression of inhibitory postsynaptic currents (DSI) through activation of M1 and M3 receptors, illustrating a significant link between the cholinergic system and endocannabinoid signaling.
View Article and Find Full Text PDF

Swelling of brain cells is one of the physiological responses associated with neuronal activation. To investigate underlying mechanisms, we analyzed interactions between changes in cell volume and synaptic responses in the hippocampal slices from rodents. Swelling within the CA1 area was detected as increases in transmittance of near-infrared light (IR), and field excitatory postsynaptic potentials (fEPSPs) were recorded simultaneously.

View Article and Find Full Text PDF

We studied the effects of a wasp toxin beta-pompilidotoxin (beta-PMTX) on rat hippocampal CA1 interneurons by the current-clamp technique. The firing patterns of pyramidal neurons and pyramidale interneurons were not affected by beta-PMTX, but in oriens and radiatum interneurons, beta-PMTX converted the action potentials to prolonged depolarizing potentials by slowing the inactivation of Na(+) channels. In lacunosum moleculare interneurons, beta-PMTX induced initial bursting spikes followed by block of succeeding spikes.

View Article and Find Full Text PDF

Recent studies have clarified that endogenous cannabinoids (endocannabinoids) are released from depolarized postsynaptic neurons in a Ca(2+)-dependent manner and act retrogradely on presynaptic cannabinoid receptors to suppress inhibitory or excitatory neurotransmitter release. This type of modulation has been found in the hippocampus and cerebellum and was called depolarization-induced suppression of inhibition (DSI) or excitation (DSE). In this study, we quantitatively examined the effects of postsynaptic depolarization and a cannabinoid agonist on excitatory and inhibitory synapses in rat hippocampal slices and cultures.

View Article and Find Full Text PDF

Endocannabinoids are retrograde messengers that are released from central neurons by depolarization-induced elevation of intracellular Ca2+ concentration [Ca2+]I or by activation of a group I metabotropic glutamate receptor (mGluR). We studied the interaction between these two pathways for endocannabinoid production in rat hippocampal neurons. We made a paired whole-cell recording from cultured hippocampal neurons with inhibitory synaptic connections.

View Article and Find Full Text PDF

We examined the effects of beta-pompilidotoxin (beta-PMTX), a neurotoxin derived from wasp venom, on synaptic transmission in the mammalian central nervous system (CNS). Using hippocampal slice preparations of rodents, we made both extracellular and intracellular recordings from the CA1 pyramidal neurons in response to stimulation of the Schaffer collateral/commissural fibers. Application of 5-10 microM beta-PMTX enhanced excitatory postsynaptic potentials (EPSPs) but suppressed the fast component of the inhibitory postsynaptic potentials (IPSPs).

View Article and Find Full Text PDF

The integrative function of neurons depends on the somato-dendritic distribution and properties of voltage-gated ion channels. Sodium, potassium, calcium, and hyperpolarization-activated cyclic nucleotide-gated K+ (HCN) channels expressed in the dendrites can be modulated by a number of neurotransmitters and second-messenger systems. For example, activation of protein kinases leads to an increase in dendritic excitability by removing a slow inactivation of Na+ channels and decreasing the activity of transient K+ channels in the apical dendrites of hippocampal pyramidal neurons.

View Article and Find Full Text PDF

The effects of alpha-pompilidotoxin (alpha-PMTX), a new neurotoxin isolated from the venom of a solitary wasp, were studied on the neuromuscular synapses in lobster walking leg and the rat trigeminal ganglion (TG) neurons. Paired intracellular recordings from the presynaptic axon terminals and the innervating lobster leg muscles revealed that alpha-PMTX induced long bursts of action potentials in the presynaptic axon, which resulted in facilitated excitatory and inhibitory synaptic transmission. The action of alpha-PMTX was distinct from that of other known facilitatory presynaptic toxins, including sea anemone toxins and alpha-scorpion toxins, which modify the fast inactivation of Na+ current.

View Article and Find Full Text PDF

Sodium-dependent action potentials initiated near the soma are known to backpropagate over the dendrites of CA1 pyramidal neurons in an activity-dependent manner. Consequently, later spikes in a train have smaller amplitude when recorded in the apical dendrites. We found that depolarization and resultant Ca(2+) influx into dendrites caused a persistent facilitation of spike backpropagation.

View Article and Find Full Text PDF

1. Whole-cell recordings were made from CA1 pyramidal cells in mouse hippocampal slices with patch pipettes containing the sodium indicator dye SBFI (sodium binding benzofuran isophthalate). Using a high-speed imaging system, we investigated changes in intracellular sodium concentration, [Na+]i, in response to hyperpolarizing pulses applied to the soma.

View Article and Find Full Text PDF

We studied N-methyl-D-aspartate (NMDA) receptor-mediated synaptic potentials in CA1 pyramidal neurons using hippocampal slices of gerbils after transient forebrain ischemia. In the presence of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and bicuculline, stimulation of Schaffer collateral/commissural fibers induced field excitatory postsynaptic potentials (fEPSP) activated by NMDA receptors. We found that in many slices after ischemia, prolonged low-frequency stimulation (0.

View Article and Find Full Text PDF

In pyramidal neurons from the CA1 region of the rat hippocampus, Na+-dependent action potentials backpropagate over the dendrites in an activity-dependent manner. Consequently, later spikes in a train have smaller amplitudes when recorded in the apical arbors. We studied the effect of the cholinergic agonist carbachol (CCh) on this pattern of activity when spikes were evoked synaptically or antidromically in the transverse slice preparation.

View Article and Find Full Text PDF