Publications by authors named "TsuHan Lin"

Objectives: To assess the protein binding and pharmacokinetics of sacubitril/valsartan analytes (sacubitril, sacubitrilat, and valsartan) in an open-label, single oral dose (200 mg), parallel-group study in patients with mild and moderate hepatic impairment (Child-Pugh class A and B) and matched healthy subjects.

Methods: This study enrolled 32 subjects (n = 8 in each hepatic impairment and matched healthy subjects groups). Blood samples were collected at pre-determined time points to assess pharmacokinetics of sacubitril, sacubitrilat, and valsartan.

View Article and Find Full Text PDF

Sacubitril/valsartan (LCZ696) has been approved for the treatment of heart failure. Sacubitril is an in vitro inhibitor of organic anion-transporting polypeptides (OATPs). In clinical studies, LCZ696 increased atorvastatin C by 1.

View Article and Find Full Text PDF

The somatostatin analog pasireotide and the 11β-hydroxylase inhibitor osilodrostat (LCI699) reduce cortisol levels by distinct mechanisms of action. There exists a scientific rationale to investigate the clinical efficacy of these two agents in combination. This manuscript reports the results of a toxicology study in rats, evaluating different doses of osilodrostat and pasireotide alone and in combination.

View Article and Find Full Text PDF

Background And Objective: Pradigastat, a novel diacylglycerol acyltransferase 1 inhibitor, is under development to treat familial chylomicronemia syndrome. The potential impact of hepatic impairment on the pharmacokinetics of pradigastat was evaluated in this study.

Methods: In this study, a single oral dose of 20 mg pradigastat was administered first to patients with mild and moderate hepatic impairment (n = 10/group) and subsequently to patients with severe hepatic impairment (n = 6).

View Article and Find Full Text PDF

Background And Objective: Pradigastat, a diacylglycerol acyltransferase1 inhibitor, is being developed for the treatment of familial chylomicronemia syndrome. The primary objective of this clinical study was to evaluate the effect of renal impairment on the pharmacokinetics of pradigastat.

Methods: In an open-label, parallel-group study, the single-dose (40 mg) pharmacokinetics of pradigastat were evaluated in patients with mild (n = 9), moderate (n = 10) and severe renal impairment (n = 9) compared with matched healthy subjects (n = 28).

View Article and Find Full Text PDF

Physiologically based pharmacokinetic (PBPK) modeling has been broadly used to facilitate drug development, hereby we developed a PBPK model to systematically investigate the underlying mechanisms of the observed positive food effect of compound X (cpd X) and to strategically explore the feasible approaches to mitigate the food effect. Cpd X is a weak base with pH-dependent solubility; the compound displays significant and dose-dependent food effect in humans, leading to a nonadherence of drug administration. A GastroPlus Opt logD Model was selected for pharmacokinetic simulation under both fasted and fed conditions, where the biopharmaceutic parameters (e.

View Article and Find Full Text PDF

Physiologically based pharmacokinetic (PBPK) modeling has become a useful tool to estimate the performance of orally administrated drugs. Here, we described multiple in silico/in vitro/in vivo tools to support formulation development toward mitigating the positive food effect of NVS123, a weak base with a pH-dependent and limited solubility. Administered orally with high-fat meal, NVS123 formulated as dry filled capsules displayed a positive food effects in humans.

View Article and Find Full Text PDF

Practical food effect predictions and assessments were described using in silico, in vitro, and/or in vivo preclinical data to anticipate food effects and Biopharmaceutics Classification System (BCS)/Biopharmaceutics Drug Disposition Classification System (BDDCS) class across drug development stages depending on available data: (1) limited in silico and in vitro data in early discovery; (2) preclinical in vivo pharmacokinetic, absorption, and metabolism data at candidate selection; and (3) physiologically based absorption modeling using biorelevant solubility and precipitation data to quantitatively predict human food effects, oral absorption, and pharmacokinetic profiles for early clinical studies. Early food effect predictions used calculated or measured physicochemical properties to establish a preliminary BCS/BDDCS class. A rat-based preclinical BCS/BDDCS classification used rat in vivo fraction absorbed and metabolism data.

View Article and Find Full Text PDF

Nilotinib is a highly potent and selective bcr-abl tyrosine kinase inhibitor used for the treatment of patients who are in the chronic and accelerated phases of Philadelphia chromosome-positive (Ph+) chronic myeloid leukemia (CML). Nilotinib preclinical data and its use for practical predictions of systemic exposure profiles and oral absorption are described. The systemic clearance (CL) of nilotinib was relatively low in rodents with a value of less than 25% of hepatic blood flow (Q(H)), while it was moderate in monkeys and dogs (CL/Q(H)  = 32-35%).

View Article and Find Full Text PDF

Purpose: Patupilone (EPO906) is a novel potent microtubule stabilizer, which has been evaluated for cancer treatment. A novel physiologically based pharmacokinetics (PBPK) model was developed based on nonclinical data to predict the disposition of patupilone in cancer patients.

Methods: After a single intravenous dose (1.

View Article and Find Full Text PDF

Two unsymmetrical squaraines, where the electron-rich 3,4-ethylenedioxythiophene or bithiophene conjugated fragment was used to link unconventionally the squaraine core and the hexyloxyphenyl amino group, were applied for DSCs. The corresponding photovoltaic devices exhibit an attractively panchromatic response and also convert a portion of the near-infrared photons into electricity.

View Article and Find Full Text PDF

Background: Nilotinib is a second-generation BCR-ABL tyrosine kinase inhibitor approved for the treatment of patients who have imatinib-resistant Philadelphia chromosome-positive chronic myeloid leukemia in the chronic or accelerated phase or who are unable to tolerate imatinib. Nilotinib is metabolized in the liver via oxidation and hydroxylation pathways, mediated primarily by the cytochrome P450 3A4 isozyme. Interpatient variability in systemic exposure to nilotinib has been reported to range from 32% to 64%.

View Article and Find Full Text PDF

Angiotensin receptor blockade and neprilysin (NEP) inhibition together offer potential benefits for the treatment of hypertension and heart failure. LCZ696 is a novel single molecule comprising molecular moieties of valsartan and NEP inhibitor prodrug AHU377 (1:1 ratio). Oral administration of LCZ696 caused dose-dependent increases in atrial natriuretic peptide immunoreactivity (due to NEP inhibition) in Sprague-Dawley rats and provided sustained, dose-dependent blood pressure reductions in hypertensive double-transgenic rats.

View Article and Find Full Text PDF

Studies were performed in female Sprague-Dawley rats to determine the efficacy of a new RXR specific retinoid (9cUAB30) when combined with tamoxifen in the prevention of mammary cancers and to determine various pharmacokinetic parameters of the retinoid. When administered by gavage, 9cUAB30 was rapidly absorbed and had a serum t(1/2) of 13.5 h.

View Article and Find Full Text PDF