Publications by authors named "Tsu-Wei Chen"

In cereal crops, environmental fluctuations affect different physiological processes during various developmental phases associated with the formation of yield components. Because these effects are coupled with cultivar-specific phenology, studies investigating environmental responses in different cultivars can give contradictory results regarding key phases impacting yield performance. To dissect how genotype-by-environment interactions affect grain yield in winter wheat, we estimated the sensitivities of yield components to variation in global radiation, temperature and precipitation in 220 cultivars across 81 time-windows ranging from double ridge to seed desiccation.

View Article and Find Full Text PDF

Using in silico experiment in crop model, we identified different physiological regulations of yield and yield stability, as well as quantify the genotype and environment numbers required for analysing yield stability convincingly. Identifying target traits for breeding stable and high-yielded cultivars simultaneously is difficult due to limited knowledge of physiological mechanisms behind yield stability. Besides, there is no consensus about the adequacy of a stability index (SI) and the minimal number of environments and genotypes required for evaluating yield stability.

View Article and Find Full Text PDF

Acclimation of leaf traits to fluctuating environments is a key mechanism to maximize fitness. One of the most important strategies in acclimation to changing light is to maintain efficient utilization of nitrogen in the photosynthetic apparatus by continuous modifications of between-leaf distribution along the canopy depth and within-leaf partitioning between photosynthetic functions according to local light availability. Between-leaf nitrogen distribution has been intensively studied over the last three decades, where proportional coordination between nitrogen concentration and light gradient was considered optimal in terms of maximizing canopy photosynthesis, without taking other canopy structural and physiological factors into account.

View Article and Find Full Text PDF

Major global crops in high-yielding, temperate cropping regions are facing increasing threats from the impact of climate change, particularly from drought and heat at critical developmental timepoints during the crop lifecycle. Research to address this concern is frequently focused on attempts to identify exotic genetic diversity showing pronounced stress tolerance or avoidance, to elucidate and introgress the responsible genetic factors or to discover underlying genes as a basis for targeted genetic modification. Although such approaches are occasionally successful in imparting a positive effect on performance in specific stress environments, for example through modulation of root depth, major-gene modifications of plant architecture or function tend to be highly context-dependent.

View Article and Find Full Text PDF

Yield development of agricultural crops over time is not merely the result of genetic and agronomic factors, but also the outcome of a complex interaction between climatic and site-specific soil conditions. However, the influence of past climatic changes on yield trends remains unclear, particularly under consideration of different soil conditions. In this study, we determine the effects of single agrometeorological factors on the evolution of German winter wheat yields between 1958 and 2015 from 298 published nitrogen (N)-fertilization experiments.

View Article and Find Full Text PDF

Optimizing the interplay between sinks and sources is of crucial importance for breeding progress in winter wheat. However, the physiological limitations of yield from source (e.g.

View Article and Find Full Text PDF

The world cropping area for wheat exceeds that of any other crop, and high grain yields in intensive wheat cropping systems are essential for global food security. Breeding has raised yields dramatically in high-input production systems; however, selection under optimal growth conditions is widely believed to diminish the adaptive capacity of cultivars to less optimal cropping environments. Here, we demonstrate, in a large-scale study spanning five decades of wheat breeding progress in western Europe, where grain yields are among the highest worldwide, that breeding for high performance in fact enhances cultivar performance not only under optimal production conditions but also in production systems with reduced agrochemical inputs.

View Article and Find Full Text PDF

Breeders select for yield, thereby indirectly selecting for traits that contribute to it. We tested if breeding has affected a range of traits involved in plant architecture and light interception, via the analysis of a panel of 60 maize hybrids released from 1950 to 2015. This was based on novel traits calculated from reconstructions derived from a phenotyping platform.

View Article and Find Full Text PDF

Multi-genotype canopies are frequent in phenotyping experiments and are of increasing interest in agriculture. Radiation interception efficiency (RIE) and radiation use efficiency (RUE) have low heritabilities in such canopies. We propose a revised Monteith equation that identifies environmental and genetic components of RIE and RUE.

View Article and Find Full Text PDF

Plants continually adjust the photosynthetic functions in their leaves to fluctuating light, thereby optimizing the use of photosynthetic nitrogen (Nph) at the canopy level. To investigate the complex interplay between external signals during the acclimation processes, a mechanistic model based on the concept of protein turnover (synthesis and degradation) was proposed and parameterized using cucumber grown under nine combinations of nitrogen and light in growth chambers. Integrating this dynamic model into a multi-layer canopy model provided accurate predictions of photosynthetic acclimation of greenhouse cucumber canopies grown under high and low nitrogen supply in combination with day-to-day fluctuations in light at two different levels.

View Article and Find Full Text PDF

Background And Aims: Most crop species are glycophytes, and salinity stress is one of the most severe abiotic stresses reducing crop yields worldwide. Salinity affects plant architecture and physiological functions by different mechanisms, which vary largely between crop species and determine the susceptibility or tolerance of a crop species to salinity.

Methods: Experimental data from greenhouse cucumber (Cucumis sativus), a salt-sensitive species, grown under three salinity levels were interpreted by combining a functional-structural plant model and quantitative limitation analysis of photosynthesis.

View Article and Find Full Text PDF

Gas exchange (GE) and chlorophyll fluorescence (CF) measurements are widely used to noninvasively study photosynthetic parameters, for example the rates of maximum Rubisco carboxylation (V ), electron transport rate (J), daytime respiration (R ) and mesophyll conductance (g ). Existing methods for fitting GE data (net assimilation rate-intercellular space CO concentration (A-C ) curve) are based on two assumptions: g is unvaried with CO concentration in the intercellular space (C ); and light absorption (α) and the proportion of quanta absorbed by photosystem II (β) are constant in the data set. These may result in significant bias in estimating photosynthetic parameters.

View Article and Find Full Text PDF

Water use efficiency (WUE) is considered as a determinant of yield under stress and a component of crop drought resistance. Stomatal behavior regulates both transpiration rate and net assimilation and has been suggested to be crucial for improving crop WUE. In this work, a dynamic model was used to examine the impact of dynamic properties of stomata on WUE.

View Article and Find Full Text PDF

Plant performance is significantly influenced by prevailing light and temperature conditions during plant growth and development. For plants exposed to natural fluctuations in abiotic environmental conditions it is however laborious and cumbersome to experimentally assign any contribution of individual environmental factors to plant responses. This study aimed at analyzing the interplay between light, temperature and internode growth based on model approaches.

View Article and Find Full Text PDF

Tomato (Solanum lycopersicum L.) is an important vegetable crop and often cultivated in regions exposed to salinity and high temperatures (HT) which change plant architecture, decrease canopy light interception and disturb physiological functions. However, the long-term effects of salinity and HT combination (S+HT) on plant growth are still unclear.

View Article and Find Full Text PDF

This paper proposes a system for hand movement recognition using multichannel electromyographic (EMG) signals obtained from the forearm surface. This system can be used to control prostheses or to provide inputs for a wide range of human computer interface systems. In this work, the hand movement recognition problem is formulated as a multi-class distance based classification of multi-dimensional sequences.

View Article and Find Full Text PDF

Myoelectric control can be used for a variety of applications including powered protheses and different human computer interface systems. The aim of this study is to investigate the formulation of myoelectric control as a multi-class distance-based classification of multidimensional sequences. More specifically, we investigate (1) estimation of multi-muscle activation sequences from multi-channel electromyographic signals in an online manner, and (2) classification using a distance metric based on multi-dimensional dynamic time warping.

View Article and Find Full Text PDF

There are conflicting opinions on the relative importance of photosynthetic limitations under salinity. Quantitative limitation analysis of photosynthesis provides insight into the contributions of different photosynthetic limitations, but it has only been applied under saturating light conditions. Using experimental data and modelling approaches, we examined the influence of light intensity on photosynthetic limitations and quantified the osmotic and ionic effects of salinity on stomatal (LS ), mesophyll (LM ), biochemical (LB ) and light (LL ) limitations in cucumber (Cucumis sativus L.

View Article and Find Full Text PDF

There is increasing interest in evaluating the environmental effects on crop architectural traits and yield improvement. However, crop models describing the dynamic changes in canopy structure with environmental conditions and the complex interactions between canopy structure, light interception, and dry mass production are only gradually emerging. Using tomato (Solanum lycopersicum L.

View Article and Find Full Text PDF

Background And Aims: Maximizing photosynthesis at the canopy level is important for enhancing crop yield, and this requires insights into the limiting factors of photosynthesis. Using greenhouse cucumber (Cucumis sativus) as an example, this study provides a novel approach to quantify different components of photosynthetic limitations at the leaf level and to upscale these limitations to different canopy layers and the whole plant.

Methods: A static virtual three-dimensional canopy structure was constructed using digitized plant data in GroIMP.

View Article and Find Full Text PDF

Evaluation of patients with suspected neuromuscular disorders is typically based on qualitative visual and auditory assessment of needle detected eletromyographic (EMG) signals; the resulting muscle characterization is subjective and highly dependent on the skill and experience of the examiner. Quantitative electromyography (QEMG) techniques were developed to extract motor unit potential trains (MUPTs) from needle detected EMG signals, and estimate features capturing motor unit potential (MUP) morphology and quantifying morphological consistency across MUPs belonging to the same MUPT. The aim of this study is to improve available methods for obtaining transparent muscle characterizations from features obtained using QEMG techniques.

View Article and Find Full Text PDF