Publications by authors named "Tsoumpas Charalampos"

Positron emission tomography / computed tomography (PET/CT) plays a pivotal role in the assessment of cardiovascular diseases (CVD), particularly in the context of ischemic heart disease. Nevertheless, its application in other forms of CVD, such as infiltrative, infectious, or inflammatory conditions, remains limited. Recently, PET/CT systems with an extended axial field of view (LAFOV) have been developed, offering greater anatomical coverage and significantly enhanced PET sensitivity.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the effectiveness of [F]FDG PET and LGE-CMR imaging methods for distinguishing cardiac sarcoidosis (CS) from myocardial inflammation resulting from COVID-19.
  • It involved analyzing image data from 35 post-COVID-19 patients and 40 CS patients, focusing on extracting and testing radiomic features to improve diagnostic accuracy for these conditions.
  • The results indicated that the combined signature of features from [F]FDG PET performed exceptionally well with an AUC of 0.98 and accuracy of 0.91, while LGE-CMR achieved an accuracy of 0.75 and AUC of 0.87, highlighting the potential of machine learning classifiers in enhancing diagnostic outcomes.
View Article and Find Full Text PDF

Methods to shorten [F]FDG Patlak PET imaging procedures ranging from 65-90 to 20-30 min after injection, using a population-averaged input function (PIF) scaled to patient-specific image-derived input function (IDIF) values, were recently evaluated. The aim of the present study was to explore the feasibility of ultrashort 10-min [F]FDG Patlak imaging at 55-65 min after injection using a PIF combined with direct Patlak reconstructions to provide reliable quantitative accuracy of lung tumor uptake, compared with a full-duration 65-min acquisition using an IDIF. Patients underwent a 65-min dynamic PET acquisition on a long-axial-field-of-view (LAFOV) Biograph Vision Quadra PET/CT scanner.

View Article and Find Full Text PDF

Immuno-positron emission tomography (immunoPET) enables imaging of specific targets that play a role in targeted therapy and immunotherapy, such as antigens on cell membranes, targets in the disease microenvironment, or immune cells. The most common immunoPET applications use a monoclonal antibody labeled with a relatively long-lived positron emitter such as Zr (  = 78.4 h), but smaller antibody-based constructs labeled with various other positron emitting radionuclides are also being investigated.

View Article and Find Full Text PDF

The diagnosis of medical conditions and subsequent treatment often involves radionuclide imaging techniques. To refine localisation accuracy and improve diagnostic confidence, compared with the use of a single scanning technique, a combination of two (or more) techniques can be used but with a higher risk of misalignment. For this to be reliable and accurate, recorded data undergo processing to suppress noise and enhance resolution.

View Article and Find Full Text PDF

Purpose: To ensure comparable PET/CT image quality between or within centres, clinical inter-system performance comparisons following European Association of Nuclear Medicine Research Ltd. (EARL) guidelines is required. In this work the performance of the long axial field-of-view Biograph Vision Quadra is compared to its predecessor, the short axial field-of-view Biograph Vision.

View Article and Find Full Text PDF

Background: LV geometry with shape index (SI) and eccentricity index (EI) measured by myocardial perfusion positron emission tomography/computed tomography (PET/CT) may allow the evaluation of left ventricular (LV) adverse remodeling. This first study aims to explore the relationship of SI and EI values acquired by Nitrogen-13 ammonia PET/CT in patients with normal perfusion, ischemia, and myocardial infarction. And evaluate the correlations between the variables of LV geometry, and with the variables of LV function.

View Article and Find Full Text PDF

Systemic vasculitides are autoimmune diseases characterized by inflammation of blood vessels. They are categorized based on the size of the preferentially affected blood vessels: large-, medium-, and small-vessel vasculitides. The main forms of large-vessel vasculitis include giant cell arteritis (GCA) and Takayasu arteritis (TAK).

View Article and Find Full Text PDF

Because of the limited axial field of view of conventional PET scanners, the internal carotid arteries are commonly used to obtain an image-derived input function (IDIF) in quantitative brain PET. However, time-activity curves extracted from the internal carotids are prone to partial-volume effects due to the limited PET resolution. This study aimed to assess the use of the internal carotids for quantifying brain glucose metabolism before and after partial-volume correction.

View Article and Find Full Text PDF

Objective: To determine the frequency, nature, and downstream healthcare costs of new incidental findings that are found on whole-body FDG-PET/CT in patients with a non-FDG-avid pulmonary lesion ≥10 mm that was incidentally found on previous imaging.

Materials And Methods: This retrospective study included a consecutive series of patients who underwent whole-body FDG-PET/CT because of an incidentally found pulmonary lesion ≥10 mm.

Results: Seventy patients were included, of whom 23 (32.

View Article and Find Full Text PDF

Background: Cardiovascular disease is the most common cause of death worldwide, including infection and inflammation related conditions. Multiple studies have demonstrated potential advantages of hybrid positron emission tomography combined with computed tomography (PET/CT) as an adjunct to current clinical inflammatory and infectious biochemical markers. To quantitatively analyze vascular diseases at PET/CT, robust segmentation of the aorta is necessary.

View Article and Find Full Text PDF

Background: The use of computed tomography (CT) for attenuation correction (AC) in whole-body PET/CT can result in a significant contribution to radiation exposure. This can become a limiting factor for reducing considerably the overall radiation exposure of the patient when using the new long axial field of view (LAFOV) PET scanners. However, recent CT technology have introduced features such as the tin (Sn) filter, which can substantially reduce the CT radiation dose.

View Article and Find Full Text PDF

The latest technical development in the field of positron emission tomography/computed tomography (PET/CT) imaging has been the extension of the PET axial field-of-view. As a result of the increased number of detectors, the long axial field-of-view (LAFOV) PET systems are not only characterized by a larger anatomical coverage but also by a substantially improved sensitivity, compared with conventional short axial field-of-view PET systems. In clinical practice, this innovation has led to the following optimization: (1) improved overall image quality, (2) decreased duration of PET examinations, (3) decreased amount of radioactivity administered to the patient, or (4) a combination of any of the above.

View Article and Find Full Text PDF

Cardiovascular diseases (CVD) are the leading cause of death worldwide and have an increasing impact on society. Precision medicine, in which optimal care is identified for an individual or a group of individuals rather than for the average population, might provide significant health benefits for this patient group and decrease CVD morbidity and mortality. Molecular imaging provides the opportunity to assess biological processes in individuals in addition to anatomical context provided by other imaging modalities and could prove to be essential in the implementation of precision medicine in CVD.

View Article and Find Full Text PDF

Imaging water pathways in the human body provides an excellent way of measuring accurately the blood flow directed to different organs. This makes it a powerful diagnostic tool for a wide range of diseases that are related to perfusion and oxygenation. Although water PET has a long history, its true potential has not made it into regular clinical practice.

View Article and Find Full Text PDF

The purpose of this study was to quantify any differences between the SUVs of Zr immuno-PET scans obtained using a PET/CT system with a long axial field of view (LAFOV; Biograph Vision Quadra) compared to a PET/CT system with a short axial field of view (SAFOV; Biograph Vision) and to evaluate how LAFOV PET scan duration affects image noise and SUV metrics. Five metastatic breast cancer patients were scanned consecutively on SAFOV and LAFOV PET/CT scanners. Four additional patients were scanned using only LAFOV PET/CT.

View Article and Find Full Text PDF

The concept of has been proposed for exploring the next generation of radiation detectors with improved performance. A TOF-PET geometry with heterostructured scintillators with a pixel size of 3.0 × 3.

View Article and Find Full Text PDF

Background: The aim of this study is to explore the utility of cardiac magnetic resonance (CMR) imaging of radiomic features to distinguish active and inactive cardiac sarcoidosis (CS).

Methods: Subjects were classified into active cardiac sarcoidosis (CS) and inactive cardiac sarcoidosis (CS) based on PET-CMR imaging. CS was classified as featuring patchy [F]fluorodeoxyglucose ([F]FDG) uptake on PET and presence of late gadolinium enhancement (LGE) on CMR, while CS was classified as featuring no [F]FDG uptake in the presence of LGE on CMR.

View Article and Find Full Text PDF

The oral route is the most widely used and preferable way of drug administration. Several pharmacokinetic processes play a role in the distribution of administered drugs. Therefore, accurate quantification of absorption, distribution, metabolism, excretion, and characterisation of drug kinetics after oral administration is extremely important for developing new human drugs.

View Article and Find Full Text PDF

The aim of this study was to develop and validate an automated pipeline that could assist the diagnosis of active aortitis using radiomic imaging biomarkers derived from [18F]-Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography (FDG PET-CT) images. The aorta was automatically segmented by convolutional neural network (CNN) on FDG PET-CT of aortitis and control patients. The FDG PET-CT dataset was split into training (43 aortitis:21 control), test (12 aortitis:5 control) and validation (24 aortitis:14 control) cohorts.

View Article and Find Full Text PDF