Publications by authors named "Tsopanoglou N"

(1) Background: The present study aims to investigate the effect of administration of Levosimendan and Exenatide in various concentrations, as well as of the coadministration of those agents in an ischemia-reperfusion injury isolated heart model. (2) Methods: After 30 min of perfusion, the hearts underwent a 30 min period of regional ischemia followed by a 120 min period of reperfusion. All animals were randomly divided into 12 experimental groups of nine animals in each group: (1) Control, (2) Sham, (3) Digox (Negative control, Digoxin 1.

View Article and Find Full Text PDF

Objective: Parstatin, the N-terminal 41-amino-acid peptide cleaved by thrombin from protease-activated-receptor 1, was shown to be highly effective in preventing ocular angiogenesis and as such it has potential therapeutic applications in ocular neovascular diseases. In the frame of a safety program in preclinical development, we investigated whether parstatin exerts any cytotoxic effect in critical ocular cell populations.

Materials And Methods: Human retinal pigment epithelium cell-19 line (ARPE-19) and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay were used to investigate parstatin's effect in cell cultures.

View Article and Find Full Text PDF

Exenatide and cyclosporine A have been shown to moderately protect against myocardial reperfusion injury leading to reduction of infarct size in patients. Our objective was to investigate whether the combined treatment with exenatide (glucagon-like peptide 1 receptor agonist) and cyclosporine A or parstatin 1-26 (inhibitors of mitochondrial permeability transition pore and/or inflammation) is more beneficial than either agent alone. Rabbits underwent 40 minutes of ischemia and 120 minutes of reperfusion.

View Article and Find Full Text PDF

A series of pseudodipeptide-based chiral 1,3,4,5-tetrasubstituted-2-oxopiperazines has been designed and synthesized as potential PAR1 antagonists. These highly functionalized piperazines were synthesized from aromatic and basic amino acid derived Ψ[CH(CN)NH]pseudodipeptides through a four step pathway that involves reduction of the cyano group to build the 2-oxopiperazine ring, followed by selective functionalization at the N₄-, N₁-positions, and at the exocyclic moiety at position C5. This regioselective functionalization required the fine tuning of reaction conditions.

View Article and Find Full Text PDF

Nerve growth factor (NGF) has been reported to play an important role in physiological and pathological angiogenesis. Based on these observations, we hypothesized that NGF may induce the formation of functional blood vessels in a hindlimb ischemic rabbit model. Hindlimb ischemia was induced in 34 rabbits bilaterally by endovascular embolization of femoral arteries.

View Article and Find Full Text PDF

By applying a diversity oriented synthesis strategy for the search of new antagonists of the thrombin receptor PAR1, a series of peptide-based ureas and thioureas, including analogues of the PAR1 reference antagonist RWJ-58259, has been designed and synthesized. The general synthetic scheme involves reduction of basic amino acid-derived amino nitriles by hydrogen transfer from hydrazine monohydrate in the presence of Raney Ni, followed by reaction with diverse isocyanates and isothiocyanates, and protecting group removal. All new compounds have been evaluated as inhibitors of human platelet aggregation induced by the PAR1 agonist SFLLRN.

View Article and Find Full Text PDF

Background/aims: Parstatin is a 41-mer peptide formed by proteolytic cleavage on activation of the protease-activated receptor 1. Parstatin was recently found to be cardioprotective against myocardial ischemia/reperfusion (IR) injury. In the present study, it was hypothesized that parstatin would protect the kidneys in acute renal failure.

View Article and Find Full Text PDF

The protease-activated receptor 1 (PAR1) is activated by thrombin cleavage releasing the physiologically-relevant parstatin peptide (residues 1-41). However, the actual length of parstatin was unclear since the receptor may also possess a cleavable signal peptide (residues 1-21) according to prediction programs. Here, we show that this putative signal peptide is indeed functional and removed from the PAR1 resolving the question of parstatin length.

View Article and Find Full Text PDF

Purpose: Parstatin is a 41-mer peptide formed by proteolytic cleavage on activation of the PAR1 receptor. The authors recently showed that parstatin is a potent inhibitor of angiogenesis. The purpose of the present study was to evaluate the therapeutic effect of parstatin on ocular neovascularization.

View Article and Find Full Text PDF

A plethora of endogenous modulators of angiogenesis have been identified and their roles in the molecular and cellular events that mediate and regulate angiogenesis have been proposed. In this review, we summarize the recent findings on the role of thrombin/thrombosis on angiogenesis and other related pathophysiological processes. The mechanisms by which thrombin itself and its receptor PAR1 orchestrate many cellular events through interaction with a variety of other factors and cell types are discussed.

View Article and Find Full Text PDF

Parstatin, the N-terminal 41-amino-acid peptide cleaved by thrombin from the protease-activated receptor 1, protects against rat myocardial ischemia and reperfusion injury. In this study, we determined that the parstatin fragment 1-26, the putative signal peptide of protease-activated receptor 1, contains the functional domain of parstatin. We assessed a synthesized parstatin(1-26) peptide in an in vivo rat model of myocardial regional ischemia-reperfusion injury (n = 6/group).

View Article and Find Full Text PDF

Aims: Thrombin activates protease-activated receptor 1 by proteolytic cleavage of the N-terminus. Although much research has focused on the activated receptor, little is known about the 41-amino acid N-terminal peptide (parstatin). We hypothesized that parstatin would protect the heart against ischaemia-reperfusion injury.

View Article and Find Full Text PDF

Background: Compared with angiogenesis, arteriogenesis is a distinct process based on the remodeling and maturation of pre-existing arterioles into large conductance arteries. Therapeutic angiogenesis has been proposed as a potential treatment for ischemic atherosclerotic diseases. Since a variety of angiogenic factors have been tested with inconsistent so far clinical results, the challenge remains in identifying the factor(s) that will stimulate functional neovascularization.

View Article and Find Full Text PDF

The proteolytic activation by thrombin of the proteinase-activated receptor 1 unveils the tethered peptide ligand and cleaves a 41-amino acid peptide. In this report, we show that this peptide, which we have designated as "parstatin," is a potent inhibitor of angiogenesis. Synthesized parstatin suppressed both the basic angiogenesis and that stimulated by basic fibroblast growth factor and vascular endothelial growth factor in the chick embryo model in vivo and in the rat aortic ring assay.

View Article and Find Full Text PDF

Thrombin has been reported to play a pivotal role in the initiation of angiogenesis by indirectly regulating and organizing a network of angiogenic molecules. In addition, it has been proposed that thrombin can directly activate endothelial cell proliferation. However, in this report it was shown that thrombin is a poor growth factor for human endothelial cells, and its modest mitogenic activity is mediated indirectly by the release of heparin-binding epidermal growth factor, subsequent to proteinase-activated receptor 1 (PAR1) activation.

View Article and Find Full Text PDF

Angiogenesis, the growth of new blood vessels from preexisting ones, is a necessary component of embryogenesis, wound healing, and the proliferative phase of the female reproductive cycle. Angiogenesis also plays a critical role in important pathologic processes such as cancer and cardiovascular complications. In addition, clinical, laboratory, and pharmacologic evidence has shown a link between angiogenesis, coagulation, hemostasis, and thrombosis in the settings of these pathologies.

View Article and Find Full Text PDF

Alpha 2-adrenergic receptors (alpha(2)-ARs) have a widespread distribution in the central nervous system (CNS) and affect a number of biochemical and behavioral functions, including stimulation of prefrontal cortex (PFC) and cognitive function. In addition to its role as a classical neurotransmitter, norepinephrine (NE) has been recently shown to exert an important influence on the plasticity in areas of the brain where neurogenesis persists in the adult, notably the subgranular zone (SGZ) within the dentate gyrus of the hippocampus and the olfactory bulb (OB). In regulating adult neurogenesis, the noradrenergic system is functionally integrated with chronic stress and depression.

View Article and Find Full Text PDF

Angiogenesis is the process of generating new blood vessels from preexisting vessels and is considered essential in many pathological conditions. The purpose of the present study was to evaluate the effect of methylene blue in chick chorioallantoic membrane angiogenesis model in vivo. In this well characterized model, methylene blue inhibited angiogenesis in a concentration-dependent manner.

View Article and Find Full Text PDF

Many studies support the notion that protease-activated receptor (PAR)-1 plays a pivotal role in angiogenesis. However, direct evidence and understanding the molecular mechanisms involved were limited because PAR-1-specific antagonists have been developed only recently. In the present study, we evaluated the effects of two well characterized PAR-1 antagonists, SCH79797 ((N-3-cyclopropyl-7-{[4-(1-methylethyl)phenyl]-methyl}-7H-pyrrolo[3,2-f]quinazoline-1,3-diamine)) and RWJ56110 [(alphaS)-N-[(1S)-3-amino-1-[[(phenylmethyl)amino]carbonyl]propyl]-alpha-[[[[[1-(2,6-dichlorophenyl)methyl]-3-(1-pyrrolidinylmethyl)-1H-indol-6-yl]amino]carbonyl]amino]-3,4-difluorobenzenepropanamide], in the angiogenic cascade.

View Article and Find Full Text PDF

Previous studies have suggested that thrombin interacts with integrins in endothelial cells through its RGD (Arg-187, Gly-188, Asp-189) sequence. All existing crystal structures of thrombin show that most of this sequence is buried under the 220-loop and therefore interaction via RGD implies either partial unfolding of the enzyme or its proteolytic digestion. Here, we demonstrate that surface-absorbed thrombin promotes attachment and migration of endothelial cells through interaction with alpha(v)beta(3) and alpha(5)beta(1) integrins.

View Article and Find Full Text PDF

In a previous report we have presented evidence that thrombin interacts with alpha(v)beta(3) integrin in endothelial cells at the molecular and cellular level. This interaction was shown to be of functional significance in vitro and in vivo and contributed to activation of angiogenesis by thrombin. In the present study, we have used a synthetic thrombin peptide, TP508, which represents residues 183 to 200 of human thrombin.

View Article and Find Full Text PDF

Clinical, laboratory, histopathological, and pharmacological evidence support the notion that the coagulation system, which is activated in most cancer patients, plays an important role in tumor biology. Our laboratory has provided evidence that thrombin activates angiogenesis, a process which is essential in tumor growth and metastasis. This event is independent of fibrin formation.

View Article and Find Full Text PDF

Human umbilical vein endothelial cells (HUVECs) placed on plastic plates coated with collagen type IV or laminin adhered within 60 min to an extent of about 32 and 39%, respectively. Brief exposure of HUVECs to thrombin caused a marked dose-dependent inhibition of adhesion. Thrombin at 1 IU/ml caused 50% inhibition even after 5 min of exposure of HUVECs.

View Article and Find Full Text PDF

Thrombin has been reported to be a potent angiogenic factor both in vitro and in vivo, and many of the cellular effects of thrombin may contribute to activation of angiogenesis. In this report we show that thrombin-treatment of human endothelial cells increases mRNA and protein levels of alphavbeta3-integrin. This thrombin-mediated effect is specific, dose dependent, and requires the catalytic site of thrombin.

View Article and Find Full Text PDF