Lithium niobate is the most popular material for terahertz wave generation via stimulated polariton scattering (SPS), previously known to have a gain peak near 2 THz. Here we report the discovery of another phase-matched gain peak near 4 THz in lithium niobate, which greatly extends the useful gain spectrum of lithium niobate. Despite the relatively high 4 THz absorption in lithium niobate, the 4 THz SPS becomes dominant over the 2 THz one in an intensely pumped short lithium niobate crystal due to less diffraction-induced absorption and mode-area mismatch.
View Article and Find Full Text PDFWe report superior terahertz parametric generation from potassium titanyl phosphate (KTP) over congruent-grown lithium niobate (CLN) and lithium tantalate (CLT) in terms of parametric gain and laser damage resistance. Under the same pump and crystal configurations, the signal emerged first from KTP, 5% Mg-doped CLN, CLN, and then finally from CLT. The signal growth rate in KTP was comparable to that in 5%-Mg-doped CLN, but the signal power from KTP reached a much higher value after all the other crystals were damaged by the pump laser.
View Article and Find Full Text PDFOptical parametric mixing is a popular scheme to generate an idler wave at THz frequencies, although the THz wave is often absorbing in the nonlinear optical material. It is widely suggested that the useful material length for co-directional parametric mixing with strong THz-wave absorption is comparable to the THz-wave absorption length in the material. Here we show that, even in the limit of the absorption loss exceeding parametric gain, the THz idler wave can grows monotonically from optical parametric amplification over a much longer distance in a nonlinear optical material until pump depletion.
View Article and Find Full Text PDFWe report forward and backward THz-wave difference frequency generations at 197 and 469 μm from a PPLN rectangular crystal rod with an aperture of 0.5 (height in z) × 0.6 (width in y) mm(2) and a length of 25 mm in x.
View Article and Find Full Text PDFHigh-efficiency THz generation in quasi-phase matched (QPM) optically contacted GaAs (OC-GaAs) with near-Brewster angle pumping is studied numerically. The effective nonlinear coefficients d(eff) for different incident angles and polarization directions are investigated. Compared with the normal incidence case, reflection loss of the pump energy at OC-GaAs interfaces can be reduced by propagating the pump at a near-Brewster angle (66.
View Article and Find Full Text PDF