Watermelon, an important fruit crop worldwide, is prone to attack by several viruses that often results in destructive yield loss. To develop a transgenic watermelon resistant to multiple virus infection, a single chimeric transgene comprising a silencer DNA from the partial N gene of Watermelon silver mottle virus (WSMoV) fused to the partial coat protein (CP) gene sequences of Cucumber mosaic virus (CMV), Cucumber green mottle mosaic virus (CGMMV) and Watermelon mosaic virus (WMV) was constructed and transformed into watermelon (cv. Feeling) via Agrobacterium-mediated transformation.
View Article and Find Full Text PDFZucchini yellow mosaic virus (ZYMV) and Papaya ringspot virus type W (PRSV W) are major limiting factors for production of watermelon worldwide. For the effective control of these two viruses by transgenic resistance, an untranslatable chimeric construct containing truncated ZYMV coat protein (CP) and PRSV W CP genes was transferred to commercial watermelon cultivars by Agrobacterium-mediated transformation. Using our protocol, a total of 27 putative transgenic lines were obtained from three cultivars of 'Feeling' (23 lines), 'China baby' (3 lines), and 'Quality' (1 line).
View Article and Find Full Text PDFProduction of oriental melon (Cucumis melo var. makuwa) in Asia is often limited by two potyviruses, the watermelon infecting type of Papaya ringspot virus (PRSV W) and Zucchini yellow mosaic virus (ZYMV). In order to engineer transgenic resistance to these two viruses, an untranslatable chimeric DNA comprising partial coat protein (CP) sequences of ZYMV and PRSV W was constructed and used to transform the elite cultivar of oriental melon, Silver Light, by Agrobacterium.
View Article and Find Full Text PDFPapaya production is seriously limited by Papaya ringspot virus (PRSV) worldwide and Papaya leaf-distortion mosaic virus (PLDMV) in Eastern Asia. An efficient transformation method for developing papaya lines with transgenic resistance to these viruses and commercially desirable traits, such as hermaphroditism, is crucial to shorten the breeding program for this fruit crop. In this investigation, an untranslatable chimeric construct pYP08 containing truncated PRSV coat protein (CP) and PLDMV CP genes coupled with the 3' untranslational region of PLDMV, was generated.
View Article and Find Full Text PDFProduction of melon (Cucumis melo L.) worldwide is often limited by the potyvirus, Zucchini yellow mosaic virus (ZYMV). In order to engineer melon lines resistant to ZYMV, a construct containing the translatable coat protein (CP) sequence coupled with the 3' non-translatable region of the virus was generated and used to transform an elite cultivar of oriental melon (Silver light) mediated by Agrobacterium using an improved cotyledon-cutting method.
View Article and Find Full Text PDFABSTRACT Papaya ringspot virus (PRSV) is a major limiting factor for cultivation of papaya (Carica papaya) in tropical and subtropical areas throughout the world. Although the coat protein (CP) gene of PRSV has been transferred into papaya by particle bombardment and transgenic lines with high resistance to Hawaii strains have been obtained, they are susceptible to PRSV isolates outside of Hawaii. This strain-specific resistance limits the application of the transgenic lines in other areas of the world.
View Article and Find Full Text PDFFour transgenic papaya lines expressing the coat protein (CP) gene of Papaya ringspot virus (PRSV) were evaluated under field conditions for their reaction to PRSV infection and fruit production in 1996 to 1999. Plants were exposed to natural virus inoculation by aphids in two adjacent fields in four different plantings at the same sites. None of the transgenic lines showed severe symptoms of PRSV whereas control nontransgenic plants were 100% severely infected 3 to 5 months after planting.
View Article and Find Full Text PDF