Publications by authors named "Tsogbadrakh Namsrai"

Amorphous molybdenum disulfide has shown potential as a hydrogen evolution catalyst, but the origin of its high activity is unclear, as is its atomic structure. Here, we have developed a classical inter-atomic potential using the charge equilibration neural network method, and we have employed it to generate atomic models of amorphous MoS2 by melting and quenching processes. The amorphous phase contains an abundance of molybdenum and sulfur atoms in low coordination.

View Article and Find Full Text PDF

Copper-doped ZnO nanoparticles with a dopant concentration varying from 1-7 mol% were synthesized and their structural, magnetic, and photocatalytic properties were studied using XRD, TEM, SQUID magnetometry, EPR, UV-vis spectroscopy, and first-principles methods within the framework of density functional theory (DFT). Structural analysis indicated highly crystalline Cu-doped ZnO nanoparticles with a hexagonal wurtzite structure, irrespective of the dopant concentration. EDX and EPR studies indicated the incorporation of doped Cu ions in the host ZnO lattice.

View Article and Find Full Text PDF