Plants have evolved well-tuned surveillance systems, including complex defence mechanisms, to constrain pathogens. TFs are master regulators of host molecular responses against plant pathogens. While PepMV constitutes a major threat to the global tomato production, there is still a lack of information on the key TFs that regulate host responses to this virus.
View Article and Find Full Text PDFIn plants, auxin transport and development are tightly coupled, just as hormone and growth responses are intimately linked in multicellular systems. Here we provide insights into uncoupling this tight control by specifically targeting the expression of TINY ROOT HAIR 1 (TRH1), a member of plant high-affinity potassium (K+)/K+ uptake/K+ transporter (HAK/KUP/KT) transporters that facilitate K+ uptake by co-transporting protons, in Arabidopsis root cell files. Use of this system pinpointed specific root developmental responses to acropetal versus basipetal auxin transport.
View Article and Find Full Text PDFThe gram-positive pathogenic bacterium subsp. () causes bacterial canker disease in tomato, affecting crop yield and fruit quality. To understand how tomato plants respond, the dynamic expression profile of host genes was analyzed upon infection.
View Article and Find Full Text PDFThe wall is the last frontier of a plant cell involved in modulating growth, development and defense against biotic stresses. Cellulose and additional polysaccharides of plant cell walls are the most abundant biopolymers on earth, having increased in economic value and thereby attracted significant interest in biotechnology. Cellulose biosynthesis constitutes a highly complicated process relying on the formation of cellulose synthase complexes.
View Article and Find Full Text PDFResearch on gene functions in non-model tree species is hampered by a number of difficulties such as time-consuming genetic transformation protocols and extended period for the production of healthy transformed offspring, among others. Virus-induced gene silencing (VIGS) is an alternative approach to transiently knock out an endogenous gene of interest (GOI) by the introduction of viral sequences encompassing a fragment of the GOI and to exploit the posttranscriptional gene silencing (PTGS) mechanism of the plant, thus triggering silencing of the GOI. Here we describe the successful application of Tobacco rattle virus (TRV)-mediated VIGS through agroinoculation of olive plantlets.
View Article and Find Full Text PDFEukaryotic organisms accomplish the removal of introns to produce mature mRNAs through splicing. Nuclear and organelle splicing mechanisms are distinctively executed by spliceosome and group II intron complex, respectively. Here, we show that LEFKOTHEA, a nuclear encoded RNA-binding protein, participates in chloroplast group II intron and nuclear pre-mRNA splicing.
View Article and Find Full Text PDFElectrophoretic mobility shift assay (EMSA) is a sensitive technique useful in the identification and characterization of protein interactors with nucleic acids. This assay provides an efficient method to study DNA or RNA binding proteins and to identify nucleic acid substrates. The specific interaction plays important roles in many biological processes such as transcription, translation, splicing, and global gene expression.
View Article and Find Full Text PDFThe degradation of damaged proteins is essential for cell viability. Lon is a highly conserved ATP-dependent serine-lysine protease that maintains proteostasis. We performed a comparative genome-wide analysis to determine the evolutionary history of Lon proteases.
View Article and Find Full Text PDFEpidermal cell differentiation is a paramount and conserved process among plants. In Arabidopsis, a ternary complex formed by MYB, bHLH transcription factors and TTG1 modulates unicellular trichome morphogenesis. The formation of multicellular glandular trichomes of the xerophytic shrub Cistus creticus that accumulate labdane-type diterpenes, has attained much attention renowned for its medicinal properties.
View Article and Find Full Text PDFTrichoblasts of trh1 plants form root-hair initiation sites that fail to undergo tip growth resulting in a tiny root-hair phenotype. TRH1 belongs to Arabidopsis KT/KUP/HAK potassium transporter family controlling root-hair growth and gravitropism. Double mutant combinations between trh1 and root-hair mutants affecting cell fate or root-hair initiation exhibited additive phenotypes, suggesting that TRH1 acts independently and developmentally downstream of root-hair initiation.
View Article and Find Full Text PDFLon is the first identified ATP-dependent protease highly conserved across all kingdoms. Model plant species Arabidopsis thaliana has a small Lon gene family of four members. Although these genes share common structural features, they have distinct properties in terms of gene expression profile, subcellular targeting and substrate recognition motifs.
View Article and Find Full Text PDFCellular homeostasis relies on components of protein quality control including chaperones and proteases. In bacteria and eukaryotic organelles, Lon proteases play a critical role in removing irreparably damaged proteins and thereby preventing the accumulation of deleterious degradation-resistant aggregates. Gene expression, live-cell imaging, immunobiochemical, and functional complementation approaches provide conclusive evidence for Lon1 dual-targeting to chloroplasts and mitochondria.
View Article and Find Full Text PDFIntracellular selective proteolysis is an important post-translational regulatory mechanism maintaining protein quality control by removing defective, damaged or even deleterious protein aggregates. The ATP-dependent Lon protease is a key component of protein quality control that is highly conserved across the kingdoms of living organisms. Major advancements have been made in bacteria and in non-plant organisms to understand the role of Lon in protection against protein oxidation, ageing and neurodegenerative diseases.
View Article and Find Full Text PDF