Induced pluripotent stem cells (iPSCs) can be differentiated into mesenchymal stem cells (iPSC-MSCs), retinal ganglion cells (iPSC-RGCs), and retinal pigmental epithelium cells (iPSC-RPEs) to meet the demand of regeneration medicine. Since the production of iPSCs and iPSC-derived cell lineages generally requires massive and time-consuming laboratory work, artificial intelligence (AI)-assisted approach that can facilitate the cell classification and recognize the cell differentiation degree is of critical demand. In this study, we propose the multi-slice tensor model, a modified convolutional neural network (CNN) designed to classify iPSC-derived cells and evaluate the differentiation efficiency of iPSC-RPEs.
View Article and Find Full Text PDFRecently, WebGL has been widely used in numerous web-based medical image viewers to present advanced imaging visualization. However, in the scenario of medical imaging, there are many challenges of computation time and memory consumption that limit the use of advanced image renderings, such as volume rendering and multiplanar reformation/reconstruction, in low-cost mobile devices. In this study, we propose a client-side rendering low-cost computation algorithm for common two- and three-dimensional medical imaging visualization implemented by pure JavaScript.
View Article and Find Full Text PDF