Publications by authors named "Tsendmaa Bold"

Cadmium (Cd), a ubiquitous heavy metal, exists in numerous environmental matrices and has severe adverse effects on various human organs and tissues. This research evaluates blood and urine Cd levels in the Chinese population through data mining using Monte Carlo simulation (MCS). A total of 168 scientific studies (120 on urine and 48 on blood) published between January 1980 and December 2020, reflecting a population of 109,743 individuals in China, were included in the study.

View Article and Find Full Text PDF

Glutathione (GSH) and glutathione-S-transferases (GSTs) are two frontlines of cellular defense against both acute and chronic toxicity of xenobiotics-induced oxidative stress. The contribution of GSH and GST enzymes to signaling pathways and the regulation of GSH homeostasis play a central role in the detoxification of numerous environmental toxins and impurities. Iron oxide nanoparticles stemmed from traffic exhaust, steel manufacturing, or welding as a potential environmental pollution can lead to adverse respiratory outcomes and aggravate the risk of chronic health conditions via persistent oxidative stress.

View Article and Find Full Text PDF

Air pollution exposure is now considered a growing concern for global public health. RNA or DNA methylation changes caused by air pollution may be related to the development of cardiovascular disease. To investigate the early biomarkers of air pollution exposure, a panel study of eight college students recorded after a business trip from Qingdao to Shijiazhuang and back to Qingdao was performed in this work.

View Article and Find Full Text PDF

Promoting angiogenesis is a key strategy for stimulating the repair of damaged tissues, including bone. Among other proangiogenic factors, ions have recently been considered a potent element that can be incorporated into biomaterials and then released at therapeutic doses. Silicate-based biomaterials have been reported to induce neovascularization through vascular endothelial growth factor signaling pathway, potentiating acceleration of bone regeneration.

View Article and Find Full Text PDF