Publications by authors named "Tschopp P"

Behavior is critical for animal survival and reproduction, and possibly for diversification and evolutionary radiation. However, the genetics behind adaptive variation in behavior are poorly understood. In this work, we examined a fundamental and widespread behavioral trait, exploratory behavior, in one of the largest adaptive radiations on Earth, the cichlid fishes of Lake Tanganyika.

View Article and Find Full Text PDF

The early limb bud consists of mesenchymal limb progenitors derived from the lateral plate mesoderm (LPM). The LPM also gives rise to the mesodermal components of the flank and neck. However, the cells at these other levels cannot produce the variety of cell types found in the limb.

View Article and Find Full Text PDF

Repeating patterns of synovial joints are a highly conserved feature of articulated digits, with variations in joint number and location resulting in diverse digit morphologies and limb functions across the tetrapod clade. During the development of the amniote limb, joints form iteratively within the growing digit ray, as a population of distal progenitors alternately specifies joint and phalanx cell fates to segment the digit into distinct elements. While numerous molecular pathways have been implicated in this fate choice, it remains unclear how they give rise to a repeating pattern.

View Article and Find Full Text PDF

The tetrapod limb has long served as a paradigm to study vertebrate pattern formation and evolutionary diversification. The distal part of the limb, the so-called autopod, is of particular interest in this regard, given the numerous modifications in both its morphology and behavioral motor output. While the underlying alterations in skeletal form have received considerable attention, much less is known about the accompanying changes in the neuromuscular system.

View Article and Find Full Text PDF

Background: Motor neurons in the vertebrate spinal cord have long served as a paradigm to study the transcriptional logic of cell type specification and differentiation. At limb levels, pool-specific transcriptional signatures first restrict innervation to only one particular muscle in the periphery, and get refined, once muscle connection has been established. Accordingly, to study the transcriptional dynamics and specificity of the system, a method for establishing muscle target-specific motor neuron transcriptomes would be required.

View Article and Find Full Text PDF

Transcriptomic signatures based on cellular mRNA expression profiles can be used to categorize cell types and states. Yet whether different functional groups of genes perform better or worse in this process remains largely unexplored. Here we test the core matrisome - that is, all genes coding for structural proteins of the extracellular matrix - for its ability to delineate distinct cell types in embryonic single-cell RNA-sequencing (scRNA-seq) data.

View Article and Find Full Text PDF

Background: During development, complex organ patterns emerge through the precise temporal and spatial specification of different cell types. On an evolutionary timescale, these patterns can change, resulting in morphological diversification. It is generally believed that homologous anatomical structures are built-largely-by homologous cell types.

View Article and Find Full Text PDF

Background: Physicians spend a lot of time in routine tasks, i.e. repetitive and time consuming tasks that are essential for the diagnostic and treatment process.

View Article and Find Full Text PDF

Fifty years ago, Lewis Wolpert introduced the concept of "positional information" to explain how patterns form in a multicellular embryonic field. Using morphogen gradients, whose continuous distributions of positional values are discretized via thresholds into distinct cellular states, he provided, at the theoretical level, an elegant solution to the "French Flag problem." In the intervening years, many experimental studies have lent support to Wolpert's ideas.

View Article and Find Full Text PDF

The tetrapod limb has long served as a paradigm to study vertebrate pattern formation. During limb morphogenesis, a number of distinct tissue types are patterned and subsequently must be integrated to form coherent functional units. For example, the musculoskeletal apparatus of the limb requires the coordinated development of the skeletal elements, connective tissues, muscles and nerves.

View Article and Find Full Text PDF

In many animal species with a bilateral symmetry, genes are clustered either at one or at several genomic loci. This organization has a functional relevance, as the transcriptional control applied to each gene depends upon its relative position within the gene cluster. It was previously noted that vertebrate clusters display a much higher level of genomic organization than their invertebrate counterparts.

View Article and Find Full Text PDF

Background: Through precise implementation of distinct cell type specification programs, differentially regulated in both space and time, complex patterns emerge during organogenesis. Thanks to its easy experimental accessibility, the developing chicken limb has long served as a paradigm to study vertebrate pattern formation. Through decades' worth of research, we now have a firm grasp on the molecular mechanisms driving limb formation at the tissue-level.

View Article and Find Full Text PDF

Sex chromosomes differentiated from different ancestral autosomes in various vertebrate lineages. Here, we trace the functional evolution of the XY Chromosomes of the green anole lizard (), on the basis of extensive high-throughput genome, transcriptome and histone modification sequencing data and revisit dosage compensation evolution in representative mammals and birds with substantial new expression data. Our analyses show that sex chromosomes represent an ancient XY system that originated at least ≈160 million years ago in the ancestor of Iguania lizards, shortly after the separation from the snake lineage.

View Article and Find Full Text PDF

Critical steps in forming the vertebrate limb include the positioning of digits and the positioning of joints within each digit. Recent studies have proposed that the iterative series of digits is established by a Turing-like mechanism generating stripes of chondrogenic domains. However, re-examination of available data suggest that digits are actually patterned as evenly spaced spots, not stripes, which then elongate into rod-shaped digit rays by incorporating new cells at their tips.

View Article and Find Full Text PDF

Because of the worldwide aging of populations, Alzheimer's disease and other dementias constitute a devastating experience for patients and families as well as a major social and economic burden for both healthcare systems and society. Multiple potentially modifiable cardiovascular and lifestyle risk factors have been associated with this disease. Thus, modifying these risk factors and identifying protective factors represent important strategies to prevent and delay disease onset and to decrease the social burden.

View Article and Find Full Text PDF

The principle of homology is central to conceptualizing the comparative aspects of morphological evolution. The distinctions between homologous or non-homologous structures have become blurred, however, as modern evolutionary developmental biology (evo-devo) has shown that novel features often result from modification of pre-existing developmental modules, rather than arising completely de novo. With this realization in mind, the term 'deep homology' was coined, in recognition of the remarkably conserved gene expression during the development of certain animal structures that would not be considered homologous by previous strict definitions.

View Article and Find Full Text PDF

Androgen receptor (AR) signaling is a key driver of prostate cancer (PC). While androgen-deprivation therapy is transiently effective in advanced disease, tumors often progress to a lethal castration-resistant state (CRPC). We show that recurrent PC-driver mutations in speckle-type POZ protein (SPOP) stabilize the TRIM24 protein, which promotes proliferation under low androgen conditions.

View Article and Find Full Text PDF

The move of vertebrates to a terrestrial lifestyle required major adaptations in their locomotory apparatus and reproductive organs. While the fin-to-limb transition has received considerable attention, little is known about the developmental and evolutionary origins of external genitalia. Similarities in gene expression have been interpreted as a potential evolutionary link between the limb and genitals; however, no underlying developmental mechanism has been identified.

View Article and Find Full Text PDF

Following their duplications at the base of the vertebrate clade, Hox gene clusters underwent remarkable sub- and neo-functionalization events. Many of these evolutionary innovations can be associated with changes in the transcriptional regulation of their genes, where an intricate relationship between the structure of the gene cluster and the architecture of the surrounding genomic landscape is at play. Here, we report on a portfolio of in vivo genome engineering strategies in mice, which have been used to probe and decipher the genetic and molecular underpinnings of the complex regulatory mechanisms implemented at these loci.

View Article and Find Full Text PDF

A recent study in mice deciphers the complex genetic regulatory network underlying the morphogenesis of the face. The enhancer landscape underlying craniofacial development provides multiple entry points to understand what makes up the face, in natural variation or pathological conditions.

View Article and Find Full Text PDF

Polycomb group (PcG) proteins are essential for the repression of key factors during early development. In Drosophila, the polycomb repressive complexes (PRC) associate with defined polycomb response DNA elements (PREs). In mammals, however, the mechanisms underlying polycomb recruitment at targeted loci are poorly understood.

View Article and Find Full Text PDF

When positioned into the integrin α-6 gene, an Hoxd9lacZ reporter transgene displayed parental imprinting in mouse embryos. While the expression from the paternal allele was comparable with patterns seen for the same transgene when present at the neighboring HoxD locus, almost no signal was scored at this integration site when the transgene was inherited from the mother, although the Itga6 locus itself is not imprinted. The transgene exhibited maternal allele-specific DNA hypermethylation acquired during oogenesis, and its expression silencing was reversible on passage through the male germ line.

View Article and Find Full Text PDF
Article Synopsis
  • Linear DNA-based and Tol2-mediated transgenesis methods in zebrafish can be unreliable due to random integration and variable expression of transgenes.
  • The phiC31 integrase facilitates targeted integration of transgenes into specific genomic loci, improving stability and predictability.
  • This study successfully implemented phiC31-mediated site-directed transgenesis in zebrafish, resulting in stable germline transmission and potential for tissue-specific applications.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how the KRAB transcriptional repressor domain can manipulate gene expression by causing long-range silencing of cellular promoters.
  • By creating a mouse model where the Kif2A promoter can be controlled using a specific repressor, researchers demonstrated that they could reduce expression of a linked YFP reporter gene.
  • This silencing effect is reversible with doxycycline treatment and occurs through changes in chromatin structure, revealing potential methods for controlling gene expression in living organisms.
View Article and Find Full Text PDF

The importance of Hox genes in the specification of neuronal fates in the spinal cord has long been recognized. However, the transcriptional controls underlying their collinear expression domains remain largely unknown. Here we show in mice that the correspondence between the physical order of Hoxd genes and their rostral expression boundaries, although respecting spatial collinearity, does not display a fully progressive distribution.

View Article and Find Full Text PDF