Publications by authors named "Tschakovsky M"

Article Synopsis
  • The study tested whether high intensity interval training (HIIT) at a threshold above critical power results in no differences in time to fatigue between males and females with similar maximal oxygen uptake.
  • Thirteen males and eleven females underwent tests to measure their maximum oxygen uptake and then performed a HIIT session to exhaustion, with physiological responses recorded.
  • Results showed no significant differences in time to fatigue or heart rate between sexes, although females had lower deoxygenated hemoglobin levels during the intervals, suggesting that sex does not influence HIIT performance despite individual variability in responses.
View Article and Find Full Text PDF

Beetroot juice supplementation (BRJ) should increase nitric oxide bioavailability under conditions of muscle deoxygenation and acidosis that are a normal consequence of the maximal effort exercise test used to identify forearm critical impulse. We hypothesized BRJ would improve oxygen delivery:demand matching and forearm critical impulse performance. Healthy males (20.

View Article and Find Full Text PDF

Beetroot juice (BRJ) supplementation increases nitric oxide bioavailability with hypoxia and acidosis, characteristics of high-intensity exercise. We investigated whether BRJ improved forearm oxygen delivery:demand matching in an intensity-dependent manner. Healthy men (21 ± 2.

View Article and Find Full Text PDF

In a single bout maximal effort isometric forearm handgrip exercise test (maximal effort exercise test, MXT), contraction impulse exhibits exponential decay to an asymptote equivalent to critical impulse (CI). It is unknown whether oxygen delivery (O) and consumption () achieved at CI are maximal. Healthy men participated in a randomized crossover trial at Queen's University (Kingston, ON) between October 2017-May 2018.

View Article and Find Full Text PDF

Oxygen delivery is viewed as tightly coupled to demand in exercise below critical power because increasing oxygen delivery does not increase . However, whether the 'normal' adjustment of oxygen delivery to small muscle mass exercise in the heavy intensity domain is optimal for excitation-contraction coupling is currently unknown. In 20 participants (10 female), a remote skeletal muscle (i.

View Article and Find Full Text PDF

New Findings: What is the central question of this study? In electrically stimulated skeletal muscle, force production is downregulated when oxygen delivery is compromised and rapidly restored upon oxygen delivery restoration. Whether 'oxygen conforming' of force production occurs during voluntary muscle activation in humans and whether it is exercise intensity dependent remains unknown. What is the main finding and its importance? Here, we show in humans that force at a given voluntary muscle activation does conform to a decrease in oxygen delivery and recovers rapidly and completely with restoration of oxygen delivery.

View Article and Find Full Text PDF

Perceived fatigability, which has perception of physical strain and of mental strain as its components, can impact exercise tolerance. Upon ascent to high altitude, low landers experience reduced exercise capacity and reduced tolerance for a given absolute submaximal work rate. It is established that perceived physical strain tracks with relative exercise intensity.

View Article and Find Full Text PDF

Hypoxia-mediated cognitive dysfunction can be transiently mitigated by exercise in a laboratory-based setting. Whether this effect holds true in the context of high altitude hypoxia has not been determined. We investigated the effect of acute aerobic exercise on cognitive function (CF) at low (1400m) and high altitude (4240m).

View Article and Find Full Text PDF

This study tested the hypotheses that 1) skeletal muscle biopsies performed with the Bergström needle evoke larger perceptions of pain and greater hemodynamic reactivity compared to biopsies performed with the microbiopsy needle, and 2) both needles yield samples with similar fibre type compositions when samples are collected at similar skeletal muscle depths. Fourteen healthy (age: 21.6 ± 3.

View Article and Find Full Text PDF

The introduction of duplex Doppler ultrasound almost half a century ago signified a revolutionary advance in the ability to assess limb blood flow in humans. It is now widely used to assess blood flow under a variety of experimental conditions to study skeletal muscle resistance vessel function. Despite its pervasive adoption, there is substantial variability between studies in relation to experimental protocols, procedures for data analysis, and interpretation of findings.

View Article and Find Full Text PDF

This study tested the hypothesis that a novel, gravity-induced blood flow restricted (BFR) aerobic exercise (AE) model will result in greater activation of the AMPK-PGC-1α pathway compared with work rate-matched non-BFR. Thirteen healthy males (age: 22.4 ± 3.

View Article and Find Full Text PDF

Key Points: The immediate increase in skeletal muscle blood flow following contraction is greater when the contracting muscle is below vs. above heart level. This has been attributed to muscle pump-mediated venous emptying and subsequent widening of the arterial to venous pressure gradient, which can occur below but not above heart level.

View Article and Find Full Text PDF

The oxygen-conforming response (OCR) of skeletal muscle refers to a downregulation of muscle force for a given muscle activation when oxygen delivery (OD) is reduced, which is rapidly reversed when OD is restored. We tested the hypothesis that the OCR exists in voluntary human exercise and results in compensatory changes in muscle activation to maintain force output, thereby altering perception of effort. In eight men and eight women, electromyography (EMG), oxyhemoglobin (OHb) and deoxyhemoglobin (HHb), forearm blood flow (FBF), and task effort awareness (TEA) were measured.

View Article and Find Full Text PDF

Cardiovascular adaptations to exercise, particularly at the individual level, remain poorly understood. Previous group level research suggests the relationship between cardiac output and oxygen consumption ([Formula: see text]-[Formula: see text]) is unaffected by training as submaximal [Formula: see text] is unchanged. We recently identified substantial inter-individual variation in the exercise [Formula: see text]-[Formula: see text] relationship that was correlated to stroke volume (SV) as opposed to arterial oxygen content.

View Article and Find Full Text PDF

A single bout of high-intensity interval exercise (HIIE) improves behavioural measures of cognitive function; however, investigations using event-related potentials (ERPs) to examine the systems that underlie these cognitive improvements are lacking. The reward positivity is a positive-going ERP component that indexes reward processing evoked by 'win' feedback and is a candidate marker of an underlying human reinforcement learning system. While HIIE improves behavioural measures of learning, it is unknown how HIIE affects the amplitude of the reward positivity.

View Article and Find Full Text PDF

A single muscle compression (MC) with accompanying hyperemia and hyper-oxygenation results in attenuation of a subsequent MC hyperemia, as long as the subsequent MC takes place when muscle oxygenation is still elevated. Whether this is due to the hyper-oxygenation, or compression-induced de-activation of mechano-sensitive structures is unclear. We hypothesized that increased oxygenation and not de-activation of mechano-sensitive structures was responsible for this attenuation and that both compression and contraction-induced hyperemia attenuate the hyperemic response to a subsequent muscle contraction, and vice-versa.

View Article and Find Full Text PDF

Engagement in regular bouts of exercise confers numerous positive effects on brain health across the lifespan. Acute bouts of exercise transiently improve cognitive function, while long-term exercise training stimulates brain plasticity, improves brain function, and helps to stave off neurological disease. The action of brain-derived neurotrophic factor (BDNF) is a candidate mechanism underlying these exercise-induced benefits and is the subject of considerable attention in the exercise-brain health literature.

View Article and Find Full Text PDF

The current study examined the contribution of central and peripheral adaptations to changes in maximal oxygen uptake (V̇O) following sprint interval training (SIT). Twenty-three males completed 4 weekly SIT sessions (8 × 20-s cycling bouts at ∼170% of work rate at V̇O, 10-s recovery) for 4 weeks. Following completion of training, the relationship between changes in V̇O and changes in central (cardiac output) and peripheral (arterial-mixed venous oxygen difference (a-vOdiff), muscle capillary density, oxidative capacity, fibre-type distribution) adaptations was determined in all participants using correlation analysis.

View Article and Find Full Text PDF

Physical activity is critically important for Type 2 diabetes management, yet adherence levels are poor. This might be partly due to disproportionate exercise intolerance. Submaximal exercise tolerance is highly sensitive to muscle oxygenation; impairments in exercising muscle oxygen delivery may contribute to exercise intolerance in Type 2 diabetes since there is considerable evidence for the existence of both cardiac and peripheral vascular dysfunction.

View Article and Find Full Text PDF

Considerable interindividual differences in the Q˙-V˙O2 relationship during exercise have been documented but implications for submaximal exercise tolerance have not been considered. We tested the hypothesis that these interindividual differences were associated with differences in exercising muscle deoxygenation and ratings of perceived exertion (RPE) across a range of submaximal exercise intensities. A total of 31 (21 ± 3 years) healthy recreationally active males performed an incremental exercise test to exhaustion 24 h following a resting muscle biopsy.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) is a major orchestrator of exercise-induced brain plasticity and circulating (peripheral) BDNF may have central effects. Approximately 99% of circulating BDNF is platelet-bound, and at rest ~30% of circulating platelets are stored in the spleen. Interestingly, forearm handgrip exercise significantly elevates sympathetic outflow and has been shown to induce splenic constriction, suggesting that small muscle mass exercise could stand as a viable strategy for increasing circulating BDNF; however, the BDNF response to handgrip exercise is currently unknown.

View Article and Find Full Text PDF

Compromising oxygen delivery (OD) during exercise requires compensatory vasodilatory and/or pressor responses to protect OD:demand matching. The purpose of the study was to determine whether compensatory vasodilation is absent in some healthy young individuals in the face of a sudden reduction in exercising forearm perfusion pressure and whether this affects the exercise pressor response. Twenty-one healthy young men (21.

View Article and Find Full Text PDF

Recently, dietary nitrate supplementation has been shown to improve exercise capacity in healthy individuals through a potential nitrate-nitrite-nitric oxide pathway. Nitric oxide has been shown to play an important role in compensatory vasodilation during exercise under hypoperfusion. Previously, we established that certain individuals lack a vasodilation response when perfusion pressure reductions compromise exercising muscle blood flow.

View Article and Find Full Text PDF