Publications by authors named "Tsarkova A"

We recently identified the deazaflavin cofactor as a light emitter in novel bioluminescence (BL) system from Siberian earthworms Henlea sp. (Petushkov et al., 2023, Org.

View Article and Find Full Text PDF

We report the first total synthesis of racemic luciferin, a thieno[3,2-]thiochromene tricarboxylate comprising a 6-6-5-fused tricyclic skeleton with three sulfur atoms in different electronic states. The key transformation is based on tandem condensation of bifunctional thiol-phosphonate, obtained from dimethyl acetylene dicarboxylate, with benzothiophene-6,7-quinone. The presented convergent approach provides the synthesis of the target compound with a previously unreported fused heterocyclic core in 11 steps, thus allowing for unambiguous confirmation of the chemical structure of luciferin by 2D-NMR spectroscopy.

View Article and Find Full Text PDF

Biochemistry of bioluminescence of the marine parchment tubeworm has been in research focus for over a century; however, the results obtained by various groups contradict each other. Here, we report the isolation and structural elucidation of three compounds from algae, which demonstrate bioluminescence activity with luciferase in the presence of Fe ions. These compounds are derivatives of polyunsaturated fatty acid peroxides.

View Article and Find Full Text PDF

Hispidin is a polyketide found in plants and fungi. In bioluminescent fungi, hispidin serves as a precursor of luciferin and is produced by hispidin synthases. Previous studies revealed that hispidin synthases differ in orthologous polyketide synthases from non-bioluminescent fungi by the absence of two domains with predicted ketoreductase and dehydratase activities.

View Article and Find Full Text PDF

The bioluminescence of Siberian earthworms sp. was found to be enhanced by two low molecular weight activators, termed ActH and ActS, found in the hot extracts. The fluorescence emission maximum of the activators matches the bioluminescence spectrum that peaks at 464 nm.

View Article and Find Full Text PDF

Ca-regulated photoproteins of ctenophores lose bioluminescence activity when exposed to visible light. Little is known about the chemical nature of chromophore photoinactivation. Using a total synthesis strategy, we have established the structures of two unusual coelenterazine products, isolated from recombinant berovin of the ctenophore , which are / isomers.

View Article and Find Full Text PDF

Heterologous pathways are linked series of biochemical reactions occurring in a host organism after the introduction of foreign genes. Incorporation of metabolic pathways into host organisms is a major strategy used to increase the production of valuable secondary metabolites. Unfortunately, simple introduction of the pathway genes into the heterologous host in most cases does not result in successful heterologous expression.

View Article and Find Full Text PDF

Autoluminescent plants engineered to express a bacterial bioluminescence gene cluster in plastids have not been widely adopted because of low light output. We engineered tobacco plants with a fungal bioluminescence system that converts caffeic acid (present in all plants) into luciferin and report self-sustained luminescence that is visible to the naked eye. Our findings could underpin development of a suite of imaging tools for plants.

View Article and Find Full Text PDF

Chaetopterus variopedatus has been studied for over a century in terms of its physiology, ecology and life history. One focus of research is on its intrinsic bioluminescent emissions, which can be observed as a blue light emitted from the extremities of individual body segments, or as a secreted mucus. Even though research shows that C.

View Article and Find Full Text PDF

The symptoms of genitourinary syndrome of menopause are considered as typical for late menopausal period. However, these symptoms are increasingly diagnosed in perimenopausal and early menopausal period. Women seldom seek medical care, since autonomic menopausal symptoms are usually more bothersome.

View Article and Find Full Text PDF

Marine polychaetes , commonly known as fireworms, emit bright blue-green bioluminescence. Until the recent identification of the luciferase enzyme, little progress had been made toward characterizing the key components of this bioluminescence system. Here we present the biomolecular mechanisms of enzymatic (leading to light emission) and nonenzymatic (dark) oxidation pathways of newly described luciferin.

View Article and Find Full Text PDF

This paper presents the preliminary results of the separation of the Chaetopterus variopedatus bioluminescent system into luciferin and luciferase and a brief description of some of their properties.

View Article and Find Full Text PDF

Bioluminescence is found across the entire tree of life, conferring a spectacular set of visually oriented functions from attracting mates to scaring off predators. Half a dozen different luciferins, molecules that emit light when enzymatically oxidized, are known. However, just one biochemical pathway for luciferin biosynthesis has been described in full, which is found only in bacteria.

View Article and Find Full Text PDF

This is the first study to obtain a high-purity luciferase from the fungus Neonothopanus nambi biomass that is suitable for subsequent sequencing.

View Article and Find Full Text PDF

The structure of fungal oxyluciferin was determined, the enzymatic bioluminescence reaction under substrate saturation conditions with discrete monitoring of formed products was conducted, and the structures of the end products of the reaction were established. On the basis of these studies, the scheme of oxyluciferin degradation to the end products was developed. The structure of fungal oxyluciferin was confirmed by counter synthesis.

View Article and Find Full Text PDF

Bioluminescent fungi are spread throughout the globe, but details on their mechanism of light emission are still scarce. Usually, the process involves three key components: an oxidizable luciferin substrate, a luciferase enzyme, and a light emitter, typically oxidized luciferin, and called oxyluciferin. We report the structure of fungal oxyluciferin, investigate the mechanism of fungal bioluminescence, and describe the use of simple synthetic α-pyrones as luciferins to produce multicolor enzymatic chemiluminescence.

View Article and Find Full Text PDF

Even though bioluminescent oligochaetes rarely catch people's eyes due to their secretive lifestyle, glowing earthworms sighting reports have come from different areas on all continents except Antarctica. A major breakthrough in the research of earthworm bioluminescence occurred in the 1960s with the studies of the North American Diplocardia longa. Comparative studies conducted on 13 earthworm species belonging to six genera showed that N-isovaleryl-3-aminopropanal (Diplocardia luciferin) is the common substrate for bioluminescence in all examined species, while luciferases appeared to be responsible for the color of bioluminescence.

View Article and Find Full Text PDF

Bioluminescence is a form of chemiluminescence generated by luminous organisms. Luminous taxa have currently been reported from about 800 genera and probably over 10 000 species in the world. On the other hand, their bioluminescent systems, including chemical structures of luciferins/chromophores and the genes encoding luciferases/photoproteins, have been elucidated from only a few taxonomic groups, for example beetles, bacteria, dinoflagellates, ostracods and some cnidarians.

View Article and Find Full Text PDF

Bioluminescence (BL) is a spectacular phenomenon involving light emission by live organisms. It is caused by the oxidation of a small organic molecule, luciferin, with molecular oxygen, which is catalysed by the enzyme luciferase. In nature, there are approximately 30 different BL systems, of which only 9 have been studied to various degrees in terms of their reaction mechanisms.

View Article and Find Full Text PDF

Bioluminescence, the ability of a living organism to produce light through a chemical reaction, is one of Nature's most amazing phenomena widely spread among marine and terrestrial species. There are various different mechanisms underlying the emission of "cold light", but all involve a small molecule, luciferin, that provides energy for light-generation upon oxidation, and a protein, luciferase, that catalyzes the reaction. Different species often use different proteins and substrates in the process, which suggests that the ability to produce light evolved independently several times throughout evolution.

View Article and Find Full Text PDF

Many species of fungi naturally produce light, a phenomenon known as bioluminescence, however, the fungal substrates used in the chemical reactions that produce light have not been reported. We identified the fungal compound luciferin 3-hydroxyhispidin, which is biosynthesized by oxidation of the precursor hispidin, a known fungal and plant secondary metabolite. The fungal luciferin does not share structural similarity with the other eight known luciferins.

View Article and Find Full Text PDF

A novel luciferin from a bioluminescent Siberian earthworm Fridericia heliota was recently described. In this study, the Fridericia oxyluciferin was isolated and its structure elucidated. The results provide insight into a novel bioluminescence mechanism in nature.

View Article and Find Full Text PDF

We report isolation and structure elucidation of AsLn5, AsLn7, AsLn11 and AsLn12: novel luciferin analogs from the bioluminescent earthworm Fridericia heliota. They were found to be highly unusual modified peptides, comprising either of the two tyrosine-derived chromophores, CompX or CompY and a set of amino acids, including threonine, gamma-aminobutyric acid, homoarginine, and unsymmetrical N,N-dimethylarginine. These natural compounds represent a unique peptide chemistry found in terrestrial animals and rise novel questions concerning their biosynthetic origin.

View Article and Find Full Text PDF

The structure elucidation and synthesis of the luciferin from the recently discovered luminous earthworm Fridericia heliota is reported. This luciferin is a key component of a novel ATP-dependent bioluminescence system. UV, fluorescence, NMR, and HRMS spectroscopy studies were performed on 0.

View Article and Find Full Text PDF