Int J Biochem Cell Biol
November 2020
Chromatin regulators control transcription and replication, however if and how they might influence the coordination of these processes still is largely unknown. RUVBL1 and the related ATPase RUVBL2 participate in multiple nuclear processes and are implicated in cancer. Here, we report that both the excess and the deficit of the chromatin regulator RUVBL1 impede DNA replication as a consequence of altered transcription.
View Article and Find Full Text PDFEukaryotic TIP49a (Pontin) and TIP49b (Reptin) AAA+ ATPases play essential roles in key cellular processes. How their weak ATPase activity contributes to their important functions remains largely unknown and difficult to analyze because of the divergent properties of TIP49a and TIP49b proteins and of their homo- and hetero-oligomeric assemblies. To circumvent these complexities, we have analyzed the single ancient TIP49 ortholog found in the archaeon Methanopyrus kandleri (mkTIP49).
View Article and Find Full Text PDFS6 kinase is a member of the AGC family of serine/threonine kinases and plays a key role in diverse cellular processes including cell growth and metabolism. Although, the high degree of homology between S6K family members (S6K1 and S6K2) in kinase and kinase-extension domains, the two proteins are highly divergent in the N- and C-terminal regulatory regions, hinting at differential regulation, downstream signalling and cellular function. Deregulated signalling via S6Ks has been linked to various human pathologies, such as diabetes and cancer.
View Article and Find Full Text PDFThe TIP49a and TIP49b proteins belong to the family of AAA+ ATPases and play essential roles in vital processes such as transcription, DNA repair, snoRNP biogenesis, and chromatin remodeling. We report the crystal structure of a TIP49b hexamer and the comparative analysis of large-scale conformational flexibility of TIP49a, TIP49b, and TIP49a/TIP49b complexes using molecular modeling and molecular dynamics simulations in a water environment. Our results establish key principles of domain mobility that affect protein conformation and biochemical properties, including a mechanistic basis for the downregulation of ATPase activity upon protein hexamerization.
View Article and Find Full Text PDFIn bacteria, RuvABC is required for the resolution of Holliday junctions (HJ) made during homologous recombination. The RuvAB complex catalyzes HJ branch migration and replication fork reversal (RFR). During RFR, a stalled fork is reversed to form a HJ adjacent to a DNA double strand end, a reaction that requires RuvAB in certain Escherichia coli replication mutants.
View Article and Find Full Text PDFThe two closely related eukaryotic AAA+ proteins (ATPases associated with various cellular activities), RuvBL1 (RuvB-like 1) and RuvBL2, are essential components of large multi-protein complexes involved in diverse cellular processes. Although the molecular mechanisms of RuvBL1 and RuvBL2 function remain unknown, oligomerization is likely to be important for their function together or individually, and different oligomeric forms might underpin different functions. Several experimental approaches were used to investigate the molecular architecture of the RuvBL1-RuvBL2 complex and the role of the ATPase-insert domain (domain II) for its assembly and stability.
View Article and Find Full Text PDFThe S6 kinases (S6Ks) have been linked to a number of cellular processes, including translation, insulin metabolism, cell survival, and RNA splicing. Signaling via the phosphotidylinositol 3-kinase and mammalian target of rapamycin (mTOR) pathways is critical in regulating the activity and subcellular localization of S6Ks. To date, nuclear functions of both S6K isoforms, S6K1 and S6K2, are not well understood.
View Article and Find Full Text PDFInt J Biochem Cell Biol
April 2009
Chromatin modification plays an important role in modulating the access of homologous recombination proteins to the sites of DNA damage. TIP49 is highly conserved component of chromatin modification/remodeling complexes, but its involvement in homologous recombination repair in mammalian cells has not been examined in details. In the present communication we studied the role of TIP49 in recruitment of the key homologous recombination protein RAD51 to sites of DNA damage.
View Article and Find Full Text PDFRuvAB and RuvABC complexes catalyze branch migration and resolution of Holliday junctions (HJs) respectively. In addition to their action in the last steps of homologous recombination, they process HJs made by replication fork reversal, a reaction which occurs at inactivated replication forks by the annealing of blocked leading and lagging strand ends. RuvAB was recently proposed to bind replication forks and directly catalyze their conversion into HJs.
View Article and Find Full Text PDFProgression of the cells through the S phase of the cell cycle is connected with accumulation of stalled and collapsed replication forks that are repaired by homologous recombination. To investigate the temporal order of homologous recombination events during the S phase, HeLa cells synchronized at the G1/S phase boundary with mimosine were released to progress into the S phase and the phosphorylation of the histone variant H2AX, the appearance of Rad51 nuclear foci and the subcellular redistribution of Rad51 were followed. The results showed that there was gradual accumulation of double-strand breaks as judged by the increase in the phosphorylation of H2AX during the S phase.
View Article and Find Full Text PDFWe have studied the rate of DNA synthesis, cell cycle distribution, formation of gamma-H2AX, and Rad51 nuclear foci and association of Rad51 with the nuclear matrix after treatment of HeLa cells with the interstrand crosslinking agent mitomycin C (MMC) in the presence of the kinase inhibitors caffeine and wortmannin. The results showed that MMC treatment arrested the cells in S-phase and induced the appearance of gamma-H2AX and Rad51 nuclear foci, accompanied with a sequestering of Rad51 to the nuclear matrix. These effects were abrogated by caffeine, which inhibits the Ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR) kinases.
View Article and Find Full Text PDFTIP48 and TIP49 are two related and highly conserved eukaryotic AAA(+) proteins with an essential biological function and a critical role in major pathways that are closely linked to cancer. They are found together as components of several highly conserved chromatin-modifying complexes. Both proteins show sequence homology to bacterial RuvB but the nature and mechanism of their biochemical role remain unknown.
View Article and Find Full Text PDFThe repair of DNA double-strand breaks involves the accumulation of key homologous recombination proteins in nuclear foci at the sites of repair. The organization of these foci in relation to non-chromatin nuclear structures is poorly understood. To address this question, we examined the distribution of several recombination proteins in subcellular fractions following treatment of HeLa cells with ionizing radiation and the crosslinking agent mitomycin C.
View Article and Find Full Text PDFTIP48 is a highly conserved eukaryotic AAA+ protein which is an essential cofactor for several complexes involved in chromatin acetylation and remodeling, transcriptional and developmental regulation and nucleolar organization and trafficking. We show that TIP48 abundance in HeLa cells did not change during the cell cycle, nor did its distribution in various biochemical fractions. However, we observed distinct changes in the subcellular localization of TIP48 during M phase using immunofluorescence microscopy.
View Article and Find Full Text PDFHost cell reactivation assay using Trioxsalen-crosslinked plasmid pEGFP-N1 showed that human cells were able to repair Trioxsalen interstrand crosslinks (ICL). To study the mechanism of this repair pathway, cells were transfected with the plasmids pEGFP-1, which did not contain the promoter of the egfp gene, and with pEGFP-G-, which did not contain the egfp gene. Neither of these plasmids alone was able to express the green fluorescent protein.
View Article and Find Full Text PDFThe Schizosaccharomyces pombe mag1 gene encodes a DNA repair enzyme with sequence similarity to the AlkA family of DNA glycosylases, which are essential for the removal of cytotoxic alkylation products, the premutagenic deamination product hypoxanthine and certain cyclic ethenoadducts such as ethenoadenine. In this paper, we have purified the Mag1 protein and characterized its substrate specificity. It appears that the substrate range of Mag1 is limited to the major alkylation products, such as 3-mA, 3-mG and 7-mG, whereas no significant activity was found towards deamination products, ethenoadducts or oxidation products.
View Article and Find Full Text PDFRuvA plays an essential role in branch migration of the Holliday junction by RuvAB as part of the RuvABC pathway for processing Holliday junctions in Escherichia coli. Two types of RuvA-Holliday junction complexes have been characterized: 1) complex I containing a single RuvA tetramer and 2) complex II in which the junction is sandwiched between two RuvA tetramers. The functional differences between the two forms are still not clear.
View Article and Find Full Text PDFIn the context of the bacterial RuvABC system, RuvA protein binds to and is involved in the subsequent processing of a four-way DNA structure called Holliday junction that is formed during homologous recombination. Four crystal structures of RuvA from Escherichia coli (EcoRuvA) showed that it was tetrameric, while neutron scattering and two other crystal structures for RuvA from Mycobacterium leprae (MleRuvA) and EcoRuvA showed that it was an octamer. To clarify this discrepancy, sedimentation equilibrium experiments by analytical ultracentrifugation were carried out and the results showed that MleRuvA existed as a tetramer-octamer equilibrium between 0.
View Article and Find Full Text PDFThe crystal structure of the Schizosaccharomyces pombe Holliday junction resolvase Ydc2 revealed significant structural homology with the Escherichia coli resolvase RuvC but Ydc2 contains a small triple helical bundle that has no equivalent in RuvC. Two of the alpha-helices that form this bundle show homology to a putative DNA-binding motif known as SAP. To investigate the biochemical function of the triple-helix domain, truncated Ydc2 mutants were expressed in E.
View Article and Find Full Text PDFEndonuclease III (Nth) enzyme from Escherichia coli is involved in base excision repair of oxidised pyrimidine residues in DNA. The Schizosaccharomyces pombe Nth1 protein is a sequence and functional homologue of E. coli Nth, possessing both DNA glycosylase and apurinic/apyrimidinic (AP) lyase activity.
View Article and Find Full Text PDFElevated mitotic recombination and cell cycle delays are two of the cellular responses to UV-induced DNA damage. Cell cycle delays in response to DNA damage are mediated via checkpoint proteins. Two distinct DNA damage checkpoints have been characterized in Schizosaccharomyces pombe: an intra-S-phase checkpoint slows replication and a G(2)/M checkpoint stops cells passing from G(2) into mitosis.
View Article and Find Full Text PDFResolution of Holliday junctions into separate DNA duplexes requires enzymatic cleavage of an equivalent strand from each contributing duplex at or close to the point of strand exchange. Diverse Holliday junction-resolving enzymes have been identified in bacteria, bacteriophages, archaea and pox viruses, but the only eukaryotic examples identified so far are those from fungal mitochondria. We have now determined the crystal structure of Ydc2 (also known as SpCce1), a Holliday junction resolvase from the fission yeast Schizosaccharomyces pombe that is involved in the maintenance of mitochondrial DNA.
View Article and Find Full Text PDFThe Mycobacterium leprae RuvA homologue (MlRuvA) was over-expressed in Escherichia coli and purified to homogeneity. The DNA-binding specificity and the functional interactions of MlRuvA with E. coli RuvB and RuvC (EcRuvB and EcRuvC) were examined using synthetic Holliday junctions.
View Article and Find Full Text PDFThe interaction between homologous DNA molecules in recombination and DNA repair leads to the formation of crossover intermediates known as Holliday junctions. Their enzymatic processing by the RuvABC system in bacteria involves the formation of a complex between RuvA and the Holliday junction. To study the solution structure of this complex, contrast variation by neutron scattering was applied to Mycobacterium leprae RuvA (MleRuvA), a synthetic analogue of a Holliday junction with 16 base-pairs in each arm, and their stable complex.
View Article and Find Full Text PDF