Murine melanomas produce site-specific experimental brain metastases that reflect clinical reality. When injected into the internal carotid artery of mice, K-1735 melanoma cells produce metastatic lesions only in the brain parenchyma, whereas B16 melanoma cells and the somatic hybrid cells of B16 x K-1735 melanoma cells produce metastatic lesions only in the leptomeninges and ventricles. In the present study, we identified transforming growth factor-beta2 (TGF-beta2), an isoform of the TGF-beta family, as a molecular determinant of melanoma cell growth in the brain parenchyma.
View Article and Find Full Text PDFThe transforming growth factor alpha (TGFalpha)/epidermal growth factor receptor (EGFR) signaling pathway appears to play a critical role in colon cancer progression, but the cellular and molecular mechanisms that contribute to metastasis remain unknown. KM12C colon cancer cell clones expressing high (C9) or negligible (C10) levels of TGFalpha were implanted into the cecal walls of nude mice. C9 tumors formed autocrine and paracrine EGFR networks, whereas C10 tumors were unable to signal through EGFR.
View Article and Find Full Text PDFExpression of the epidermal growth factor receptor (EGFR), a receptor tyrosine kinase associated with cell proliferation and survival, is overactive in many tumors of epithelial origin. Blockade of the kinase activity of EGFR has been used for cancer therapy; however, by itself, it does not seem to reach maximum therapeutic efficacy. We report here that in human cancer cells, the function of kinase-independent EGFR is to prevent autophagic cell death by maintaining intracellular glucose level through interaction and stabilization of the sodium/glucose cotransporter 1 (SGLT1).
View Article and Find Full Text PDFThe purpose of our study was to determine whether the dual inhibition of epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) signaling pathways in tumor-associated endothelial cells can inhibit the progressive growth of human colon carcinoma in the cecum of nude mice. SW620CE2 human colon cancer cells growing in culture and orthotopically in the cecum of nude mice expressed a high level of transforming growth factor alpha (TGF-alpha) and vascular endothelial growth factor (VEGF) but were negative for EGFR, human epidermal growth factor receptor 2 (HER2), and VEGFR. Double immunofluorescence staining revealed that tumor-associated endothelial cells expressed EGFR, VEGFR2, phosphorylated EGFR (pEGFR), and phosphorylated VEGFR (pVEGFR).
View Article and Find Full Text PDFEpidermal growth factor receptor (EGFR) has been extensively targeted in the treatment of non-small cell lung cancer, producing responses in a small number of patients. To study the role of ligand expression in mediating response to EGFR antagonism, we injected NCI-H441 [EGFR and EGF/transforming growth factor-alpha (TGF-alpha) positive] or PC14-PE6 (EGFR positive and EGF/TGF-alpha negative) human lung adenocarcinoma cells into the lungs of nude mice. We randomized the mice to receive treatment with the EGFR tyrosine kinase inhibitors gefitinib or AEE788 or vehicle.
View Article and Find Full Text PDFDirect injection of murine K-1735 melanoma cells into the subcutis, lung, or brain of syngeneic mice produces amelanotic tumors, whereas intravenous injection into the lateral tail vein or internal carotid artery produces both amelanotic and melanotic foci in the lung and the brain respectively. We hypothesized that loss of adhesion in the circulation may contribute to the melanogenic phenotypes of cells. To test this, we used enforced suspension culture of K-1735 cells by consistent rotating culture of K-1735 cells.
View Article and Find Full Text PDFAngiogenesis, the development of new blood vessels from preexisting vessels, is crucial to tissue growth, repair, and maintenance. This process begins with the formation of endothelial cell sprouts followed by the proliferation and migration of neighboring endothelial cells along the preformed extensions. The initiating event and mechanism of sprouting is not known.
View Article and Find Full Text PDFTumor cells and tumor-associated endothelial cells express activated epidermal growth factor receptor (EGFR) due to production of EGF-related ligands in the tumor microenvironment. To investigate the effect of perpetual EGFR activation on endothelial cells, we developed a novel method to generate constitutively active EGFR. We fused the entire intracellular domain of the EGFR to the N-terminus of the CD3zeta component of the T-cell receptor signaling complex.
View Article and Find Full Text PDFPurpose: We determined whether the administration of the tyrosine kinase inhibitor, AEE788, which targets the epidermal growth factor receptor and the vascular endothelial growth factor receptor, alone or in combination with paclitaxel, can inhibit progressive growth of human ovarian carcinoma in the peritoneal cavity of female nude mice.
Experimental Design: Western blot analysis and immunohistochemical analysis identified the optimal dose and schedule of AEE788 therapy. In several different experiments, paclitaxel-sensitive and paclitaxel-resistant human ovarian carcinoma cells were injected into the peritoneal cavity of nude mice.
hTid-1, a human homolog of the Drosophila tumor suppressor l(2)Tid and a novel DnaJ protein, regulates the activity of nuclear factor kappaB (NF-kappaB), but its mechanism is not established. We report here that hTid-1 strongly associated with the cytoplasmic protein complex of NF-kappaB-IkappaB through direct interaction with IkappaBalpha/beta and the IKKalpha/beta subunits of the IkappaB kinase complex. These interactions resulted in suppression of the IKK activity in a J-domain-dependent fashion and led to the cytoplasmic retention and enhanced stability of IkappaB.
View Article and Find Full Text PDFOnce prostate cancer metastasizes to bone, conventional chemotherapy is largely ineffective. We hypothesized that inhibition of phosphorylation of the epidermal growth factor receptor (EGF-R) and platelet-derived growth factor receptor (PDGF-R) expressed on tumor cells and tumor-associated endothelial cells, which is associated with tumor progression, in combination with paclitaxel would inhibit experimental prostate cancer bone metastasis and preserve bone structure. We tested this hypothesis in nude mice, using human PC-3MM2 prostate cancer cells.
View Article and Find Full Text PDFThe activation of the microvascular endothelial cell platelet-derived growth factor (PDGF) receptor (PDGF-R) by PDGF has been implicated in neoplastic angiogenesis. Here, we established cultures of murine bone microvascular endothelial cells and examined their response to stimulation with PDGF BB ligand and to blockade of PDGF-R signaling with the tyrosine kinase inhibitor STI571 (Gleevec). The addition of STI571 to cultures of bone endothelial cells blocked PDGF BB-induced phosphorylation in a dose-dependent manner and completely abrogated the activation of downstream targets Akt and ERK1/2.
View Article and Find Full Text PDFTo further define the role of insulin-like growth factor-1 (IGF-1) and its receptor (IGF-1R) in osteosarcoma (OS), human OS cell lines with low (SAOS-2) and high (SAOS-LM2) metastatic potential and three canine OS-derived cell lines were studied. Cell lines were evaluated for: IGF-1R expression; expression of IGF binding proteins (IGFBPs); effect of IGF-1 on tumor cell growth, invasion, expression of urokinase plasminogen activator (uPA), and soluble uPA receptor (suPAR), and; ectopic and orthotopic tumorigenicity of the canine OS cells in athymic mice. All cell lines exhibited steady-state mRNA expression of IGF-1R.
View Article and Find Full Text PDFBackground: Increased expression of the hepatocyte growth factor (HGF) receptor (MET) is associated with high-grade prostatic adenocarcinoma and metastasis. However, the mechanism through which MET signaling contributes to prostate cancer (CaP) metastasis remains unclear.
Methods: Human PC-3 CaP cells and in vivo selected, isogeneic variant cells of increasing metastatic potential (PC-3M, PC-3M-Pro4, and PC-3M-LN4) were used to investigate the effect of HGF on CaP cell growth, protease production, and invasion.
Purpose: We evaluated the expression of platelet-derived growth factor (PDGF) ligands and receptors in clinical specimens of human pancreatic adenocarcinomas and determined the therapeutic effect of STI571 (Gleevec), a protein tyrosine kinase inhibitor of PDGF receptor (PDGFR), on human pancreatic carcinoma cells growing in the pancreas and liver of nude mice.
Experimental Design: Immunohistochemical staining for PDGF-AA and -BB ligands, PDGFR-alpha and -beta, and phosphorylated PDGFR-alpha and -beta was performed on 31 specimens of human pancreatic cancer and L3.6pl human pancreatic adenocarcinoma cell line.
To further characterize the role of hepatocyte growth factor-scatter factor (HGF-SF) and its receptor (c-Met) in osteosarcoma (OS), human OS cell lines with low (SAOS-2) and high (SAOS-LM2) metastatic potential, and cell lines derived from spontaneous canine OS were studied. All cell lines were evaluated for c-Met and HGF-SF expression and receptor activation using Northern, RT-PCR, and Western blot analyses, respectively. Functional activity of receptor-ligand interaction was measured using c-Met phosphorylation status, proliferation assays (anchorage-dependent and -independent), Matrigel invasion, modulation of urokinase plasminogen activator (uPA) expression, and cell dispersion (scattering).
View Article and Find Full Text PDFIncreased expression and/or activity of c-Met, the receptor protein tyrosine kinase for hepatocyte growth factor/scatter factor, occurs commonly during colon tumor progression. To examine potential roles for c-Met in promoting metastasis, we compared the colon tumor cell line KM12C with low metastatic potential to the isogenic variants KM,12L4 and KM12SM with high metastatic potential. KM12C cells express c-Met with low levels of tyrosine phosphorylation in the absence of HGF.
View Article and Find Full Text PDFMicrovascular endothelial cells play a critical role in tumor progression and metastasis by forming capillary networks that encourage tumor growth and by promoting the attachment of circulating tumor cells to the vascular wall of distant tissues. Efforts to study the molecular mechanisms that mediate these complex processes in different anatomical compartments have been impeded by difficulties in the isolation and propagation of endothelial cells from different organs. To overcome these limitations, we used two-color flow cytometry to identify and select microvascular endothelial cells from primary cultures obtained from different organs of mice whose tissues harbor a temperature-sensitive SV40 large T antigen (H-2K(b)-tsA58 mice; ImmortoMice).
View Article and Find Full Text PDFBackground: Expression of platelet-derived growth factor (PDGF) and activation (by autophosphorylation) of its receptor (PDGF-R), a tyrosine kinase, are associated with the growth of metastatic prostate tumor cells in the bone parenchyma. The tyrosine kinase inhibitor STI571 blocks the PDGF signaling pathway by inhibiting PDGF-R autophosphorylation. We examined the effects of STI571, given alone or with paclitaxel (Taxol), on tumor growth in a mouse model of prostate cancer metastasis.
View Article and Find Full Text PDFThe purpose of this study was to determine whether the expression of epidermal growth factor receptor (EGF-R) and activated EGF-R by tumor-associated endothelial cells is influenced by interaction with specific growth factors in the microenvironment. Different human carcinoma cell lines expressing EGF-R with low or high levels of EGF/transforming growth factor (TGF)-alpha were implanted into orthotopic organs of nude mice. In the EGF/TGF-alpha-positive bladder cancer (253J-BV), pancreatic cancer (L3.
View Article and Find Full Text PDFWe determined the optimal administration schedule of a novel epidermal growth factor receptor (EGFR) protein tyrosine kinase inhibitor (PKI), PKI 166 (4-(R)-phenethylamino-6-(hydroxyl)phenyl-7H-pyrrolo[2.3-d]-pyrimidine), alone or in combination with gemcitabine (administered i.p.
View Article and Find Full Text PDFWe determined whether down-regulation of the epidermal growth factor-receptor (EGF-R) signaling pathway by oral administration of a novel EGF-R tyrosine kinase inhibitor (PKI166) alone or in combination with gemcitabine (administered i.p.) can inhibit growth and metastasis of human pancreatic carcinoma cells implanted into the pancreas of nude mice.
View Article and Find Full Text PDFBoth epidermal growth factor receptor (EGF-R) signaling mechanisms and angiogenesis have been evaluated as independent targets for therapy of human pancreatic carcinoma, but a link between the two processes has been identified only recently. This study evaluated whether EGF-R blockade therapy with anti-EGF-R antibody C225 inhibits pancreatic carcinoma growth and metastasis in an orthotopic nude mouse model via tumor-mediated angiogenesis and whether gemcitabine potentiates this effect. In vitro treatment of human pancreatic carcinoma L3.
View Article and Find Full Text PDFIncreased epidermal growth factor receptor (EGF-R) gene expression and functional protein levels correlate with the metastatic potential of human colon carcinoma (HCC) cells in nude mice. The purpose of this study was to determine whether the production of liver metastases by HCC cells depends on the EGF-R activation status and whether different organ microenvironments influence this activation. Using two independent monoclonal antibodies specific for the activated (i.
View Article and Find Full Text PDF