We report the genome sequence of phage Φ241 infecting O157:H7. Phage Φ241 was isolated from an industrial cucumber fermentation at high acidity (pH 3.7) and high salinity (5% NaCl).
View Article and Find Full Text PDFis an opportunistic pathogen that infects fish, amphibians, mammals, and humans. This study isolated a myophage, vB_AhyM_Ahp2 (Ahp2), that lytically infects . We observed that 96% of the Ahp2 particles adsorbed to within 18 min.
View Article and Find Full Text PDFVirion-associated peptidoglycan hydrolases (VAPGH) in bacteriophages are potential antimicrobials. Xop411 is a syphophage infecting the Gram-negative Xanthomonas oryzae pv. oryzae that causes bacterial leaf blight in rice plants.
View Article and Find Full Text PDFGenome Announc
February 2017
The genomic sequence was determined for pv. glycines strain 12609, isolated in Taiwan. Based on the genome sequence, we predicted the encoded genes, rRNA, tRNA, a plasmid sequence, secretion systems, cyclic GMP- and cyclic di-GMP-mediated pathways, and the gene cluster (regulation of pathogenicity factor).
View Article and Find Full Text PDFBiomarker identification is often associated with the diagnosis and evaluation of various diseases. Recently, the role of microRNA (miRNA) has been implicated in the development of diseases, particularly cancer. With the advent of next-generation sequencing, the amount of data on miRNA has increased tremendously in the last decade, requiring new bioinformatics approaches for processing and storing new information.
View Article and Find Full Text PDFAcinetobacter baumannii is an important Gram-negative opportunistic pathogen causing nosocomial infections. The emergence of multiple-drug-resistant A. baumannii isolates has increased in recent years.
View Article and Find Full Text PDFMicrobes form intimate relationships with hosts (symbioses) that range from mutualism to parasitism. Common microbial mechanisms involved in a successful host association include adhesion, entry of the microbe or its effector proteins into the host cell, mitigation of host defenses, and nutrient acquisition. Genes associated with these microbial mechanisms are known for a broad range of symbioses, revealing both divergent and convergent strategies.
View Article and Find Full Text PDFMyriad symbiotic microbes, ranging from mutualistic through to pathogenic, deliver 'effector' molecules into the cytoplasm or cellular milieu of their hosts to facilitate colonization. Among ecologically and evolutionarily diverse taxa, analogous processes and structures exist to facilitate effector delivery. These include syringe-like injection (bacteria and nematodes), common host-targeting signals (oomycetes and protozoans) and specialized intercellular structures (fungi and oomycetes).
View Article and Find Full Text PDFProtein secretion plays a central role in modulating the interactions of bacteria with their environments. This is particularly the case when symbiotic bacteria (whether pathogenic, commensal or mutualistic) are interacting with larger host organisms. In the case of Gram-negative bacteria, secretion requires translocation across the outer as well as the inner membrane, and a diversity of molecular machines have been elaborated for this purpose.
View Article and Find Full Text PDFVoltage-gated ion channels are well known for their functional roles in excitable tissues. Excitable tissues rely on voltage-gated ion channels and their auxiliary subunits to achieve concerted electrical activity in living cells. Auxiliary subunits are also known to provide functional diversity towards the transport and biogenesis properties of the principal subunits.
View Article and Find Full Text PDFMany channels and carriers associate with auxiliary subunits which modify their activities and facilitate biogenesis. Advances in genome sequencing as well as biochemical, molecular genetic, and physiological experimentation have allowed for the discovery of many transport auxiliary subunits. Recent interests in the pharmacology of the calcium auxiliary subunits prompted a large amount of effort in deciphering their specific role in the conductance of calcium ions.
View Article and Find Full Text PDFJ Mol Microbiol Biotechnol
September 2003
Results of recent genome-sequencing projects together with advances in biochemical, molecular genetic and physiological experimentation have allowed discovery of many transport auxiliary subunits. These subunits facilitate the proper movement of substrates across cell membranes. Mutations of any of these subunits can cause catastrophic effects to the transport mechanism and cause certain genetic diseases.
View Article and Find Full Text PDF