Infectious spleen and kidney necrosis virus (ISKNV) infections can induce the process of host cellular autophagy but have rarely been identified within the molecular autophagy signaling pathway. In the present study, we demonstrated that ISKNV induces ROS-mediated oxidative stress signals for the induction of 5'AMP-activated protein kinase/mechanistic target of rapamycin kinase (AMPK/mTOR)-mediated autophagy and upregulation of host antioxidant enzymes in fish GF-1 cells. We also examined ISKNV-induced oxidative stress, finding that reactive oxidative species (ROS) increased by 1.
View Article and Find Full Text PDFInfectious spleen and kidney necrosis virus (ISKNV) infections can trigger host cell death and are correlated with viral replication; however, they have rarely been considered in terms of the host organelle involvement. In the present study, we demonstrated that ISKNV triggered an oxidative stress signal in the Nrf2-mediated oxidative stress response and induced stress signals for Bax/Bak-mediated host cell death in fish GF-1 cells. The results showed that after ISKNV infection, the levels of reactive oxidative species (ROS) increased by 60-80% from day 3 to day 5, as assessed by an H2DCFDA assay for tracing hydrogen peroxide (HO), which was correlated with up to a one-fold change in the fish GF-1 cells.
View Article and Find Full Text PDFThe molecular pathogenesis of infectious spleen and kidney necrosis virus (ISKNV) infections is important but has rarely been studied in connection to host organelle behavior. In the present study, we demonstrated that ISKNV can induce host cell death via a pro-apoptotic Bcl-2 and anti-apoptotic Bcl-2 family member imbalance in mitochondrial membrane potential (MMP or ΔΨm) regulation in GF-1 cells. The results of our study on ISKNV infection showed that it can induce host cell death by up to 80% at day 5 post-infection.
View Article and Find Full Text PDFThe giant seaperch iridovirus (GSIV) induces host cell apoptosis by a poorly-understood process. In this study, GSIV is shown to upregulate the pro-apoptotic death genes Bax and Bak at the middle replication stage, and factors in the grouper fin cell line (GF-1) are shown to modulate this process. Studying the mechanism of cell death, we found that upregulated, de novo-synthesized Bax and Bak proteins formed heterodimers.
View Article and Find Full Text PDF