Biofuel cell (BFC) electrodes are typically manufactured by combining enzymes that act as catalysts with conductive carbon nanomaterials in a form of enzyme-nanocomposite. However, a little attention has been paid to effects of the carbon nanomaterials' structural properties on the electrochemical performances of the enzyme-nanocomposites. This work aims at studying the effects of surface and bulk properties of carbon nanomaterials with different degrees of graphitization on the electrochemical performances of glucose oxidase (GOx)-nanocomposites produced by immobilizing GOx within a network of carbon nanopaticles.
View Article and Find Full Text PDFAnaerobically digested fibrous solid (AD fiber) is an abundant material that offers potential to produce value-added products such as biochar. The objective of this paper is to better understand how thermochemical processing conditions affect the capacity of biochars derived from AD fiber to adsorb HS from biogas. AD fiber was pyrolyzed in an electric tube reactor at temperatures up to 600 °C and 60 min.
View Article and Find Full Text PDFThis paper reports a novel method for producing glucose oxidase-nanocomposites by entrapping cross-linked glucose oxidase (GOx) aggregates within a graphitized mesoporous carbon (GMC) network. Entrapment was achieved by utilizing the strong self-aggregation tendency of GMC in aqueous buffer solution to form carbon networks. Using confocal microscopy and TEM, GOx-GMC nanocomposites were visualized.
View Article and Find Full Text PDF