Publications by authors named "Tsafrir S Mor"

High demand for antibodies as therapeutic interventions for various infectious, metabolic, autoimmune, neoplastic, and other diseases creates a growing need in developing efficient methods for recombinant antibody production. As of 2019, there were more than 70 FDA-approved monoclonal antibodies, and there is exponential growth potential. Despite their promise, limiting factors for widespread use are manufacturing costs and complexity.

View Article and Find Full Text PDF
Article Synopsis
  • Cocaine use disorders can lead to serious short-term issues like overdose and long-term problems such as chronic addiction, with no effective treatments currently available to reduce these risks.
  • A promising approach involves using engineered enzymes, specifically a modified form of human serum butyrylcholinesterase, to break down cocaine into inactive substances quickly.
  • A plant-derived version of this enzyme, called PCocSH, has shown success in protecting mice from cocaine overdose and preventing relapse in drug-seeking behavior, indicating its potential as a therapeutic option for treating cocaine use disorders in humans.
View Article and Find Full Text PDF

Butyrylcholinesterase (BChE) is an enzyme with broad substrate and ligand specificities and may function as a generalized bioscavenger by binding and/or hydrolyzing various xenobiotic agents and toxicants, many of which target the central and peripheral nervous systems. Variants of BChE were rationally designed to increase the enzyme's ability to hydrolyze the psychoactive enantiomer of cocaine. These variants were cloned, and then expressed using the magnICON transient expression system in plants and their enzymatic properties were investigated.

View Article and Find Full Text PDF

Showing modest efficacy, the RV144 HIV-1 vaccine clinical trial utilized a non-replicating canarypox viral vector and a soluble gp120 protein boost. Here we built upon the RV144 strategy by developing a novel combination of a replicating, but highly-attenuated Vaccinia virus vector, NYVAC-KC, and plant-produced HIV-1 virus-like particles (VLPs). Both components contained the full-length Gag and a membrane anchored truncated gp41 presenting the membrane proximal external region with its conserved broadly neutralizing epitopes in the pre-fusion conformation.

View Article and Find Full Text PDF

Viral protein U (Vpu) is a type-III integral membrane protein encoded by Human Immunodeficiency Virus-1 (HIV- 1). It is expressed in infected host cells and plays several roles in viral progeny escape from infected cells, including down-regulation of CD4 receptors. But key structure/function questions remain regarding the mechanisms by which the Vpu protein contributes to HIV-1 pathogenesis.

View Article and Find Full Text PDF

It is widely anticipated that a prophylactic vaccine may be needed to control the HIV/AIDS epidemic worldwide. Despite over two decades of research, a vaccine against HIV-1 remains elusive, although a recent clinical trial has shown promising results. Recent studies have focused on highly conserved domains within HIV-1 such as the membrane proximal external region (MPER) of the envelope glycoprotein, gp41.

View Article and Find Full Text PDF

The membrane proximal region (MPR, residues 649-683) and transmembrane domain (TMD, residues 684-705) of the gp41 subunit of HIV-1's envelope protein are highly conserved and are important in viral mucosal transmission, virus attachment and membrane fusion with target cells. Several structures of the trimeric membrane proximal external region (residues 662-683) of MPR have been reported at the atomic level; however, the atomic structure of the TMD still remains unknown. To elucidate the structure of both MPR and TMD, we expressed the region spanning both domains, MPR-TM (residues 649-705), in Escherichia coli as a fusion protein with maltose binding protein (MBP).

View Article and Find Full Text PDF

Objectives: This short commentary examines the factors that led to Food and Drug Administration's approval of the first plant-derived biologic.

Results: In 2012, the first plant-derived protein pharmaceutical (biologic) was approved for commercial use in humans. The product, a recombinant form of human β-glucocerebrosidase marketed as ELELYSO, was developed by Protalix Biotherapeutics (Carmiel, Israel).

View Article and Find Full Text PDF

The VLPNPV 2014 Conference that was convened at the Salk institute was the second conference of its kind to focus on advances in production, purification, and delivery of virus-like particles (VLPs) and nanoparticles. Many exciting developments were reported and discussed in this interdisciplinary arena, but here we report specifically on the contributions of plant-based platforms to VLP vaccine technology as reported in the section of the conference devoted to the topic as well in additional presentations throughout the meeting. The increasing popularity of plant production platforms is due to their lower cost, scalability, and lack of contaminating animal pathogens seen with other systems.

View Article and Find Full Text PDF

CTB-MPR is a fusion protein between the B subunit of cholera toxin (CTB) and the membrane-proximal region of gp41 (MPR), the transmembrane envelope protein of Human immunodeficiency virus 1 (HIV-1), and has previously been shown to induce the production of anti-HIV-1 antibodies with antiviral functions. To further improve the design of this candidate vaccine, X-ray crystallography experiments were performed to obtain structural information about this fusion protein. Several variants of CTB-MPR were designed, constructed and recombinantly expressed in Escherichia coli.

View Article and Find Full Text PDF

The transmembrane subunit (gp41) of the envelope glycoprotein of HIV-1 associates noncovalently with the surface subunit (gp120) and together they play essential roles in viral mucosal transmission and infection of target cells. The membrane proximal region (MPR) of gp41 is highly conserved and contains epitopes of broadly neutralizing antibodies. The transmembrane (TM) domain of gp41 not only anchors the envelope glycoprotein complex in the viral membrane but also dynamically affects the interactions of the MPR with the membrane.

View Article and Find Full Text PDF

Plants have a proven track record for the expression of biopharmaceutically interesting proteins. Importantly, plants and mammals share a highly conserved secretory pathway that allows similar folding, assembly and posttranslational modifications of proteins. Human butyrylcholinesterase (BChE) is a highly sialylated, tetrameric serum protein, investigated as a bioscavenger for organophosphorous nerve agents.

View Article and Find Full Text PDF

Human butyrylcholinesterase (BChE) is considered a candidate bioscavenger of nerve agents for use in pre- and post-exposure treatment. However, the presence and functional necessity of complex N-glycans (i.e.

View Article and Find Full Text PDF

Background: Concerns about the safety of paralytics such as succinylcholine to facilitate endotracheal intubation limit their use in prehospital and emergency department settings. The ability to rapidly reverse paralysis and restore respiratory drive would increase the safety margin of an agent, thus permitting the pursuit of alternative intubation strategies. In particular, patients who carry genetic or acquired deficiency of butyrylcholinesterase, the serum enzyme responsible for succinylcholine hydrolysis, are susceptible to succinylcholine-induced apnea, which manifests as paralysis, lasting hours beyond the normally brief half-life of succinylcholine.

View Article and Find Full Text PDF

Acetylcholinesterase is an enzyme that is intimately associated with regulation of synaptic transmission in the cholinergic nervous system and in neuromuscular junctions of animals. However the presence of cholinesterase activity has been described also in non-metazoan organisms such as slime molds, fungi and plants. More recently, a gene purportedly encoding for acetylcholinesterase was cloned from maize.

View Article and Find Full Text PDF

Cholinergic signaling suppresses inflammation in blood and brain and attenuates apoptosis in other tissues, but whether it blocks inflammation in skeletal muscle under toxicant exposure, injuries and diseases remained unexplored. Here, we report nicotinic attenuation of inflammation and alteration of apoptotic protein expression pattern in murine muscle tissue and cultured myotubes, involving the RNA-binding protein, Tristetraprolin, and the anti-apoptotic protein, Mcl-1. In muscles and C2C12 myotubes, cholinergic excitation by exposure to nicotine or the organophosphorous pesticide, Paraoxon, induced Tristetraprolin overproduction while reducing pro-inflammatory transcripts such as IL-6, CXCL1 (KC) and CCL2 (MCP-1).

View Article and Find Full Text PDF

The membrane-proximal region spanning residues 649-684 of the HIV-1 envelope protein gp41 (MPR₆₄₉₋₆₈₄) is an attractive vaccine target for humoral immunity that blocks viral transcytosis across the mucosal epithelia. However, induction of high-titer MPR₆₄₉₋₆₈₄-specific antibodies remains a challenging task. To explore potential solutions for this challenge, we tested a new translational fusion protein comprising the plague F1-V antigen and MPR₆₄₉₋₆₈₄ (F1-V-MPR₆₄₉₋₆₈₄).

View Article and Find Full Text PDF

The concept of using cholinesterase bioscavengers for prophylaxis against organophosphorous nerve agents and pesticides has progressed from the bench to clinical trial. However, the supply of the native human proteins is either limited (e.g.

View Article and Find Full Text PDF

Organophosphorous pesticides and nerve agents inhibit the enzyme acetylcholinesterase at neuronal synapses and in neuromuscular junctions. The resulting accumulation of acetylcholine overwhelms regulatory mechanisms, potentially leading to seizures and death from respiratory collapse. While current therapies are only capable of reducing mortality, elevation of the serum levels of the related enzyme butyrylcholinesterase (BChE) by application of the purified protein as a bioscavenger of organophosphorous compounds is effective in preventing all symptoms associated with poisoning by these toxins.

View Article and Find Full Text PDF

Background: Human cholinesterases can be used as a bioscavenger of organophosphate toxins used as pesticides and chemical warfare nerve agents. The practicality of this approach depends on the availability of the human enzymes, but because of inherent supply and regulatory constraints, a suitable production system is yet to be identified.

Results: As a promising alternative, we report the creation of "hairy root" organ cultures derived via Agrobacterium rhizogenes-mediated transformation from human acetylcholinesterase-expressing transgenic Nicotiana benthamiana plants.

View Article and Find Full Text PDF

Plants are potentially the most economical platforms for the large-scale production of recombinant proteins. Thus, plant-based expression of subunit human immunodeficiency virus type 1 (HIV-1) vaccines provides an opportunity for their global use against the acquired immunodeficiency syndrome pandemic. CTB-MPR(649-684)[CTB, cholera toxin B subunit; MPR, membrane proximal (ectodomain) region of gp41] is an HIV-1 vaccine candidate that has been shown previously to induce antibodies that block a pathway of HIV-1 mucosal transmission.

View Article and Find Full Text PDF

Nicotiana benthamiana plant lines expressing a reengineered human butyrylcholinesterase (BChE) with enhanced cocaine hydrolase activity were created. Subsequent purification and biochemical analysis revealed that compared to wild-type butyrylcholinesterase, the cocaine hydrolase displayed increased affinity to the organophosphate (OP) pesticides paraoxon (6.8 4x 10(-10)M vs.

View Article and Find Full Text PDF

CTB-MPR(649-684), a translational fusion protein consisting of cholera toxin B subunit (CTB) and residues 649 684 of gp41 membrane proximal region (MPR), is a candidate vaccine aimed at blocking early steps of HIV-1 mucosal transmission. Bacterially produced CTB MPR(649-684) was purified to homogeneity by two affinity chromatography steps. Similar to gp41 and derivatives thereof, the MPR domain can specifically and reversibly self-associate.

View Article and Find Full Text PDF