Many endogenous molecules, mostly proteins, purportedly activate the Toll-like receptor 4 (TLR4)-myeloid differentiation factor-2 (MD-2) complex, the innate immune receptor for lipopolysaccharide (LPS) derived from gram-negative bacteria. However, there is no structural evidence supporting direct TLR4-MD-2 activation by endogenous ligands. Sulfatides (3--sulfogalactosylceramides) are natural, abundant sulfated glycolipids that have variously been shown to initiate or suppress inflammatory responses.
View Article and Find Full Text PDFThe major vault protein (MVP) mediates diverse cellular responses, including cancer cell resistance to chemotherapy and protection against inflammatory responses to Here, we report the use of photoactive probes to identify MVP as a target of the -(3-oxo-dodecanoyl) homoserine lactone (C12), a quorum sensing signal of certain proteobacteria including A treatment of normal and cancer cells with C12 or other -acyl homoserine lactones (AHLs) results in rapid translocation of MVP into lipid raft (LR) membrane fractions. Like AHLs, inflammatory stimuli also induce LR-localization of MVP, but the C12 stimulation reprograms (functionalizes) bioactivity of the plasma membrane by recruiting death receptors, their apoptotic adaptors, and caspase-8 into LR. These functionalized membranes control AHL-induced signaling processes, in that MVP adjusts the protein kinase p38 pathway to attenuate programmed cell death.
View Article and Find Full Text PDFThe Toll-like receptor 7 (TLR7) agonist imiquimod is an antitumor and antiviral drug used for the treatment of skin indications such as basal cell carcinoma, squamous cell carcinoma, and genital warts caused by the human papilloma virus. We show that imiquimod has TLR7-independent activity in which it directly inhibits phosphodiesterase (PDE), leading to cAMP increase, PKA-mediated CREB phosphorylation and subsequent CRE-dependent reporter transcription. The activation of the cAMP pathway by imiquimod is synergistically amplified by the β-adrenergic receptor agonist, isoproterenol.
View Article and Find Full Text PDFExpression of the key anti-inflammatory cytokine IL-10 in lipopolysaccharide (LPS)-stimulated macrophages is mediated by a delayed autocrine/paracrine loop of type I interferons (IFN) to ensure timely attenuation of inflammation. We have previously shown that cAMP synergizes with early IL-10 expression by LPS, but is unable to amplify the late type I IFN-dependent activity. We now examined the mechanism of this synergistic transcription in mouse macrophages at the promoter level, and explored the crosstalk between type I IFN signaling and cAMP, using the β-adrenergic receptor agonist, isoproterenol, as a cAMP inducer.
View Article and Find Full Text PDFInterleukin-10 (IL-10) is a key anti-inflammatory cytokine, secreted by macrophages and other immune cells to attenuate inflammation. Autocrine type I interferons (IFNs) largely mediate the delayed expression of IL-10 by LPS-stimulated macrophages. We have previously shown that IL-10 is synergistically expressed in macrophages following a costimulus of a TLR agonist and cAMP.
View Article and Find Full Text PDFBackground And Aims: Concanavalin A is known to activate T cells and to cause liver injury and hepatitis, mediated in part by secretion of TNFα from macrophages. Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors have been shown to prevent tissue damage in various animal models of inflammation. The objectives of this study were to evaluate the efficacy and mechanism of the PARP-1 inhibitor 3-aminobenzamide (3-AB) in preventing concanavalin A-induced liver damage.
View Article and Find Full Text PDFPhospho-ceramide analogue-1 (PCERA-1), a synthetic analogue of ceramide-1-phosphate (C1P), has been previously shown to act as a potent modulator of macrophage activity and inflammation. We have developed an efficient synthesis of PCERA-1 from readily available starting materials, and designed and prepared derivatives of this analogue, including a photoaffinity probe to tag and identify putative proteins that bind PCERA-1.
View Article and Find Full Text PDFInflammation is an ensemble of tightly regulated steps, in which macrophages play an essential role. Previous reports showed that the natural sphingolipid ceramide 1-phosphate (C1P) stimulates macrophages migration, while the synthetic C1P mimic, phospho-ceramide analogue-1 (PCERA-1), suppresses production of the key pro-inflammatory cytokine TNFα and amplifies production of the key anti-inflammatory cytokine IL-10 in LPS-stimulated macrophages, via one or more unidentified G-protein coupled receptors. We show that C1P stimulated RAW264.
View Article and Find Full Text PDFProtein binding to DNA is a fundamental process in gene regulation. Methodologies such as ChIP-Seq and mapping of DNase I hypersensitive sites provide global information on this regulation in vivo In vitro methodologies provide valuable complementary information on protein-DNA specificities. However, current methods still do not measure absolute binding affinities.
View Article and Find Full Text PDFThe bacterial molecule N-3-oxo-dodecanoyl-l-homoserine lactone (C12) has critical roles in both interbacterial communication and interkingdom signaling. The ability of C12 to downregulate production of the key proinflammatory cytokine TNF-α in stimulated macrophages was suggested to contribute to the establishment of chronic infections by opportunistic Gram-negative bacteria, such as Pseudomonas aeruginosa. We show that, in contrast to TNF-α suppression, C12 amplifies production of the major anti-inflammatory cytokine IL-10 in LPS-stimulated murine RAW264.
View Article and Find Full Text PDFThe synthesis and comparison of activities of 'tag-free' probes with diazirines at various positions are described. Remarkable differences in their effects on P. aeruginosa and on human bronchial epithelial cells were observed, supporting the efforts to isolate and identify receptors for N-acyl homoserine lactones.
View Article and Find Full Text PDFType I chaperonins (cpn60/Hsp60) are essential proteins that mediate the folding of proteins in bacteria, chloroplast and mitochondria. Despite the high sequence homology among chaperonins, the mitochondrial chaperonin system has developed unique properties that distinguish it from the widely-studied bacterial system (GroEL and GroES). The most relevant difference to this study is that mitochondrial chaperonins are able to refold denatured proteins only with the assistance of the mitochondrial co-chaperonin.
View Article and Find Full Text PDFMacrophages, pivotal cells in onset and progression of inflammation, can benefit from sub-cellular drug targeting to the molecular loci of drug action, whether cell membrane or cell interior. Postulating manipulation of liposome size and surface properties can provide sub-cellular targeting, we studied: thermodynamics of liposome-macrophage binding; liposome cellular localizations; liposome safety including pro-inflammatory cytokine production. We aimed at extending the body of knowledge on interactions of regular unilamellar (RL-ULV) and multilamellar (RL-MLV) liposomes with macrophages.
View Article and Find Full Text PDFThe Phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002 (LY2), has been previously reported to inhibit nuclear factor κB (NFκB) activity, in a PI3K-independent mechanism. The goals of the current research were to determine the specificity of LY2 regarding NFκB subunits, and to identify relevant modulation of cytokine expression in LPS-stimulated macrophages. We found that LY2 specifically diminished the level of p50, but not p65, NFκB in the nucleus of LPS-stimulated mouse RAW264.
View Article and Find Full Text PDFProstaglandin E(2) (PGE(2)) is an important mediator of the inflammatory response. Phospho-ceramide analogue-1 (PCERA-1), a synthetic phospholipid-like molecule, was previously reported to modulate pro- and anti-inflammatory cytokine production. We show here that PCERA-1 inhibited LPS-stimulated PGE(2) production in RAW264.
View Article and Find Full Text PDFDetermination of microgram quantities of protein in the Bradford Coomassie brilliant blue assay is accomplished by measurement of absorbance at 590 nm. This most common assay enables rapid and simple protein quantification in cell lysates, cellular fractions, or recombinant protein samples, for the purpose of normalization of biochemical measurements. However, an intrinsic nonlinearity compromises the sensitivity and accuracy of this method.
View Article and Find Full Text PDFThe role of CREB in LPS signaling is controversial. The objective of this study was to evaluate the effect of LPS on phosphorylation and transcriptional activation of CREB, in comparison to isoproterenol, a beta-adrenergic receptor agonist. We show here that LPS elevates intra-cellular cAMP level in RAW264.
View Article and Find Full Text PDFThe synthetic phospho-ceramide analogue-1 (PCERA-1) down-regulates production of the pro-inflammatory cytokine tumour necrosis factor-alpha (TNF-alpha) and up-regulates production of the anti-inflammatory cytokine interleukin-10 (IL-10) in lipopolysaccharide (LPS) -stimulated macrophages. We have previously reported that PCERA-1 increases cyclic adenosine monophosphate (cAMP) levels. The objective of this study was to delineate the signalling pathway leading from PCERA-1 via cAMP to modulation of TNF-alpha and IL-10 production.
View Article and Find Full Text PDFCeramide-1-phosphate (C1P) is known as a second messenger regulating a multitude of processes including cell growth, apoptosis and inflammation. Exciting recent findings now suggest that C1P can stimulate macrophages migration in an extra-cellular manner via a G protein-coupled receptor (GPCR). Interestingly, a synthetic C1P analog, named phospho-ceramide analogue-1 (PCERA-1), was recently described as a potent in-vivo anti-inflammatory agent, and was suggested to act on macrophages in an extra-cellular manner via a GPCR.
View Article and Find Full Text PDFExpression of the anti-inflammatory cytokine IL-10 can be induced either by TLR agonists such as lipopolysaccharide (LPS), or by various endogenous stimuli, in particular those acting via a cAMP-dependent signaling pathway. We have previously reported that the synthetic phospho-ceramide analogue-1 (PCERA-1) increases cAMP level and subsequently down-regulates production of TNFalpha and up-regulates production of IL-10 in LPS-stimulated macrophages. The objective of this study was to determine the mechanism of activity of PCERA-1 and the role of cAMP in LPS-induced IL-10 production.
View Article and Find Full Text PDFPhospho-ceramide analog-1 (PCERA-1) has been described as a potent in vivo suppressor of the pro-inflammatory cytokine tumor necrosis factor alpha (TNFalpha), and thus as a putative drug for the treatment of inflammatory diseases. However, the in vivo cell target of PCERA-1 has not been identified, and its in vivo effect on secretion of other relevant cytokines has not been reported. We have previously shown that PCERA-1 suppresses lipopolysaccharide (LPS)-induced TNFalpha production in RAW264.
View Article and Find Full Text PDFTight regulation of the production of the key pro-inflammatory cytokine tumour necrosis factor-alpha (TNF-alpha) is essential for the prevention of chronic inflammatory diseases. In vivo administration of a synthetic phospholipid, named hereafter phospho-ceramide analogue-1 (PCERA-1), was previously found to suppress lipopolysaccharide (LPS)-induced TNF-alpha blood levels. We therefore investigated the in vitro anti-inflammatory effects of PCERA-1.
View Article and Find Full Text PDFPhosphorylation of the cAMP response element binding protein (CREB) at Ser-133 in response to hormonal stimuli triggers cellular gene expression via the recruitment of the histone acetylase coactivator paralogs CREB binding protein (CBP) and p300 to the promoter. The NMR structure of the CREB:CBP complex, using relevant interaction domains called KID and KIX, respectively, reveals a shallow hydrophobic groove on the surface of KIX that accommodates an amphipathic helix in phospho (Ser-133) KID. Using an NMR-based screening approach on a preselected small-molecule library, we identified several compounds that bind to different surfaces on KIX.
View Article and Find Full Text PDFThe hematopoietic transcription factor c-Myb activates transcription of target genes through direct interactions with the KIX domain of the co-activator CBP. The solution structure of the KIX domain in complex with the activation domain of c-Myb reveals a helical structure very similar to that adopted by KIX in complex with the phosphorylated kinase inducible domain (pKID) of CREB. While pKID contains two helices, alphaA and alphaB, which interact with KIX, the structure of bound c-Myb reveals a single bent amphipathic helix that binds in the same hydrophobic groove as the alphaB helix of pKID.
View Article and Find Full Text PDFThe interactions between cAMP-response element-binding protein (CREB)-binding protein (CBP) and gene-specific transcription factors play an important role in activation of transcription from numerous genes. Cooperative interactions between CBP and multiple transcriptional activators may provide a mechanism for synergistic increases in transcriptional activation. Here we report the characterization of ternary complexes formed by the KIX domain of CBP and the transactivation domain of the trithorax group protein mixed lineage leukemia protein (MLL), together with either the phosphorylated kinase-inducible domain (pKID) of CREB or the activation domain from c-Myb.
View Article and Find Full Text PDF