Marine invertebrates living in oxygen minimum zones (OMZ), where low pO and high pCO conditions co-occur, display physiological mechanisms allowing them to deal with these coupled stressors. We measured aerobic metabolic rate (MR) and the critical oxygen tension (P), and calculated the oxygen supply capacity (α) of both the red (Grimothea monodon) and yellow (Grimothea johni) squat lobsters, under two pCO scenarios (~414 and 1400 μatm). We also measured haemolymph pH, haemocyanin oxygen binding affinity (p), and haemolymph lactate content in both species under normoxia, low pCO hypoxia and high pCO hypoxia.
View Article and Find Full Text PDFChanges in land use, a warming climate and increased drought have amplified wildfire frequency and magnitude globally. Subsequent rainfall in wildfire-scarred watersheds washes ash into aquatic systems, increasing water pH and exposing organisms to environmental alkalinization. In this study, 15 or 20 °C-acclimated Chinook salmon (Oncorhynchus tshawytscha) yearlings were exposed to an environmentally-relevant ash concentration (0.
View Article and Find Full Text PDFMost molluscs possess shells, constructed from a vast array of microstructures and architectures. The fully formed shell is composed of calcite or aragonite. These CaCO crystals form complex biocomposites with proteins, which although typically less than 5% of total shell mass, play significant roles in determining shell microstructure.
View Article and Find Full Text PDFAlthough geographical patterns of species' sensitivity to environmental changes are defined by interacting multiple stressors, little is known about compensatory processes shaping regional differences in organismal vulnerability. Here, we examine large-scale spatial variations in biomineralization under heterogeneous environmental gradients of temperature, salinity and food availability across a 30° latitudinal range (3,334 km), to test whether plasticity in calcareous shell production and composition, from juveniles to large adults, mediates geographical patterns of resilience to climate change in critical foundation species, the mussels Mytilus edulis and M. trossulus.
View Article and Find Full Text PDFShape variability represents an important direct response of organisms to selective environments. Here, we use a combination of geometric morphometrics and generalised additive mixed models (GAMMs) to identify spatial patterns of natural shell shape variation in the North Atlantic and Arctic blue mussels, Mytilus edulis and M. trossulus, with environmental gradients of temperature, salinity and food availability across 3980 km of coastlines.
View Article and Find Full Text PDFParasitic and commensal species can impact the structure and function of ecological communities and are typically highly specialized to overcome host defences. Here, we report multiple instances of a normally free-living species, the blue mussel Linnaeus, 1758, inhabiting the branchial chamber of the shore crab (Linnaeus, 1758) collected from widely separated geographical locations. A total of 127 were examined from four locations in the English Channel, one location in the Irish Sea and two locations at the entrance of the Baltic Sea.
View Article and Find Full Text PDFThe effects of short-term (7 d) exposure to environmental hypoxia (2.11 mg O₂ L⁻¹; control: 6.96 mg O₂ L⁻¹) and varying degrees of shell damage (1 or 2, 1 mm diameter holes; control: no holes) on respiration rate, clearance rate, ammonia excretion rate, scope for growth (SFG) and body condition index were investigated in adult blue mussels (Mytilus edulis).
View Article and Find Full Text PDF