Publications by authors named "Trygve E Bakken"

We present an enhancer AAV toolbox for accessing and perturbing striatal cell types and circuits. Best-in-class vectors were curated for accessing major striatal neuron populations including medium spiny neurons (MSNs), direct and indirect pathway MSNs, as well as Sst-Chodl, Pvalb-Pthlh, and cholinergic interneurons. Specificity was evaluated by multiple modes of molecular validation, three different routes of virus delivery, and with diverse transgene cargos.

View Article and Find Full Text PDF
Article Synopsis
  • Identifying cell type-specific enhancers in the brain is crucial for developing genetic tools to study mammalian brains, particularly in the context of mouse models.
  • The 'Brain Initiative Cell Census Network (BICCN) Challenge' aimed to evaluate machine learning methods for predicting these enhancers based on data from multi-omics studies.
  • Key findings included the importance of open chromatin as a predictor of functional enhancers, the role of sequence models in distinguishing non-functional enhancers, and the recognition of specific transcription factor codes to aid in the design of enhancers, ultimately advancing our understanding of gene regulation in the mammalian brain.
View Article and Find Full Text PDF
Article Synopsis
  • Researchers addressed the limited access to lower motor neurons (LMNs) in the mammalian spinal cord by creating single cell multiome datasets from mouse and macaque spinal cords to identify enhancers for different neuronal populations.* -
  • They cloned identified enhancers into viral vectors and conducted functional tests in mice to screen for effective candidates, which were then validated in rats and macaques.* -
  • This new toolkit for labeling LMNs and upper motor neurons (UMNs) can facilitate future research on cell function across species and contribute to potential therapies for neurodegenerative diseases in humans.*
View Article and Find Full Text PDF
Article Synopsis
  • The mammalian cortex consists of different cell types that have specific properties, which are important for understanding how the cortex functions in both health and disease.
  • Researchers utilized data from mouse and human studies to identify marker genes and enhancers for various cortical cell types, creating a comprehensive set of tools for targeting these cells specifically.
  • They introduced fifteen new transgenic driver lines, two new reporter lines, and over 800 enhancer AAVs, facilitating a wide range of experimental approaches to study the mammalian cortex and its functions.
View Article and Find Full Text PDF

Single-cell genomics is a powerful tool for studying heterogeneous tissues such as the brain. Yet little is understood about how genetic variants influence cell-level gene expression. Addressing this, we uniformly processed single-nuclei, multiomics datasets into a resource comprising >2.

View Article and Find Full Text PDF
Article Synopsis
  • - Single-cell genomics helps us study diverse brain tissues, revealing how genetic variants affect gene expression at the cell level through an analysis of over 2.8 million nuclei from the prefrontal cortex across 388 individuals.
  • - Researchers identified more than 550,000 specific regulatory elements and over 1.4 million expression-quantitative-trait loci linked to various cell types, allowing them to develop networks that illustrate the impact of aging and neuropsychiatric disorders on cellular changes.
  • - An integrative model was created to predict single-cell gene expression and simulate cellular changes, which identified around 250 genes associated with disease risk and relevant drug targets tied to specific cell types.
View Article and Find Full Text PDF
Article Synopsis
  • * We discovered over 1.3 million lineage-specific structural variants (SVs) that impact thousands of protein-coding genes and regulatory elements, revealing significant genomic differences among primates, especially compared to humans.
  • * Our research identified 1,607 regions with structural variations that are hotspots for gene loss and creation, indicating areas in the genome subject to rapid evolution and natural selection across primate species.
View Article and Find Full Text PDF

Neocortical layer 1 (L1) is a site of convergence between pyramidal-neuron dendrites and feedback axons where local inhibitory signaling can profoundly shape cortical processing. Evolutionary expansion of human neocortex is marked by distinctive pyramidal neurons with extensive L1 branching, but whether L1 interneurons are similarly diverse is underexplored. Using Patch-seq recordings from human neurosurgical tissue, we identified four transcriptomic subclasses with mouse L1 homologs, along with distinct subtypes and types unmatched in mouse L1.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the cellular structure of the human cortex to define different cortical areas using single-cell transcriptomics.
  • Researchers performed RNA-sequencing across eight cortical areas and found consistent cellular makeup, but notable variations in the proportion of excitatory neuron subclasses, indicating differences in connectivity.
  • Findings include unique features in the primary visual cortex, such as changes in the ratio of excitatory to inhibitory neurons and an expansion of excitatory neurons in layer 4, suggesting a need for refined understanding of human cortical organization.
View Article and Find Full Text PDF

Single-cell transcriptomic studies have identified a conserved set of neocortical cell types from small postmortem cohorts. We extended these efforts by assessing cell type variation across 75 adult individuals undergoing epilepsy and tumor surgeries. Nearly all nuclei map to one of 125 robust cell types identified in the middle temporal gyrus.

View Article and Find Full Text PDF

The cognitive abilities of humans are distinctive among primates, but their molecular and cellular substrates are poorly understood. We used comparative single-nucleus transcriptomics to analyze samples of the middle temporal gyrus (MTG) from adult humans, chimpanzees, gorillas, rhesus macaques, and common marmosets to understand human-specific features of the neocortex. Human, chimpanzee, and gorilla MTG showed highly similar cell-type composition and laminar organization as well as a large shift in proportions of deep-layer intratelencephalic-projecting neurons compared with macaque and marmoset MTG.

View Article and Find Full Text PDF

Proper brain function requires the assembly and function of diverse populations of neurons and glia. Single cell gene expression studies have mostly focused on characterization of neuronal cell diversity; however, recent studies have revealed substantial diversity of glial cells, particularly astrocytes. To better understand glial cell types and their roles in neurobiology, we built a new suite of adeno-associated viral (AAV)-based genetic tools to enable genetic access to astrocytes and oligodendrocytes.

View Article and Find Full Text PDF

Rodent studies have demonstrated that synaptic dynamics from excitatory to inhibitory neuron types are often dependent on the target cell type. However, these target cell-specific properties have not been well investigated in human cortex, where there are major technical challenges in reliably obtaining healthy tissue, conducting multiple patch-clamp recordings on inhibitory cell types, and identifying those cell types. Here, we take advantage of newly developed methods for human neurosurgical tissue analysis with multiple patch-clamp recordings, fluorescent in situ hybridization (FISH), machine learning-based cell type classification and prospective GABAergic AAV-based labeling to investigate synaptic properties between pyramidal neurons and PVALB- vs.

View Article and Find Full Text PDF

Genes associated with risk for brain disease exhibit characteristic expression patterns that reflect both anatomical and cell type relationships. Brain-wide transcriptomic patterns of disease risk genes provide a molecular-based signature, based on differential co-expression, that is often unique to that disease. Brain diseases can be compared and aggregated based on the similarity of their signatures which often associates diseases from diverse phenotypic classes.

View Article and Find Full Text PDF

Neurons in the developing brain undergo extensive structural refinement as nascent circuits adopt their mature form. This physical transformation of neurons is facilitated by the engulfment and degradation of axonal branches and synapses by surrounding glial cells, including microglia and astrocytes. However, the small size of phagocytic organelles and the complex, highly ramified morphology of glia have made it difficult to define the contribution of these and other glial cell types to this crucial process.

View Article and Find Full Text PDF

Most genetic studies consider autism spectrum disorder (ASD) and developmental disorder (DD) separately despite overwhelming comorbidity and shared genetic etiology. Here, we analyzed de novo variants (DNVs) from 15,560 ASD (6,557 from SPARK) and 31,052 DD trios independently and also combined as broader neurodevelopmental disorders (NDDs) using three models. We identify 615 NDD candidate genes (false discovery rate [FDR] < 0.

View Article and Find Full Text PDF

Single-cell technologies measure unique cellular signatures but are typically limited to a single modality. Computational approaches allow the fusion of diverse single-cell data types, but their efficacy is difficult to validate in the absence of authentic multi-omic measurements. To comprehensively assess the molecular phenotypes of single cells, we devised single-nucleus methylcytosine, chromatin accessibility, and transcriptome sequencing (snmCAT-seq) and applied it to postmortem human frontal cortex tissue.

View Article and Find Full Text PDF

The neocortex is disproportionately expanded in human compared with mouse, both in its total volume relative to subcortical structures and in the proportion occupied by supragranular layers composed of neurons that selectively make connections within the neocortex and with other telencephalic structures. Single-cell transcriptomic analyses of human and mouse neocortex show an increased diversity of glutamatergic neuron types in supragranular layers in human neocortex and pronounced gradients as a function of cortical depth. Here, to probe the functional and anatomical correlates of this transcriptomic diversity, we developed a robust platform combining patch clamp recording, biocytin staining and single-cell RNA-sequencing (Patch-seq) to examine neurosurgically resected human tissues.

View Article and Find Full Text PDF

The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals. Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. The core conserved molecular identities of neuronal and non-neuronal cell types allow us to generate a cross-species consensus classification of cell types, and to infer conserved properties of cell types across species.

View Article and Find Full Text PDF

In the neocortex, subcerebral axonal projections originate largely from layer 5 (L5) extratelencephalic-projecting (ET) neurons. The unique morpho-electric properties of these neurons have been mainly described in rodents, where retrograde tracers or transgenic lines can label them. Similar labeling strategies are infeasible in the human neocortex, rendering the translational relevance of findings in rodents unclear.

View Article and Find Full Text PDF

Abundant evidence supports the presence of at least three distinct types of thalamocortical (TC) neurons in the primate dorsal lateral geniculate nucleus (dLGN) of the thalamus, the brain region that conveys visual information from the retina to the primary visual cortex (V1). Different types of TC neurons in mice, humans, and macaques have distinct morphologies, distinct connectivity patterns, and convey different aspects of visual information to the cortex. To investigate the molecular underpinnings of these cell types, and how these relate to differences in dLGN between human, macaque, and mice, we profiled gene expression in single nuclei and cells using RNA-sequencing.

View Article and Find Full Text PDF

Autism is a highly heritable complex disorder in which de novo mutation (DNM) variation contributes significantly to risk. Using whole-genome sequencing data from 3,474 families, we investigate another source of large-effect risk variation, ultra-rare variants. We report and replicate a transmission disequilibrium of private, likely gene-disruptive (LGD) variants in probands but find that 95% of this burden resides outside of known DNM-enriched genes.

View Article and Find Full Text PDF

Alu repeats contribute to phylogenetic novelties in conserved regulatory networks in primates. Our study highlights how exonized Alus could nucleate large-scale mRNA-miRNA interactions. Using a functional genomics approach, we characterize a transcript isoform of an orphan gene, CYP20A1 (CYP20A1_Alu-LT) that has exonization of 23 Alus in its 3'UTR.

View Article and Find Full Text PDF