Publications by authors named "Trygve D Kjellsen"

Woody plants in boreal to arctic environments and high mountains survive prolonged exposure to temperatures below -40°C and minimum temperatures below -60°C, and laboratory tests show that many of these species can also survive immersion in liquid nitrogen at -196°C. Studies of biochemical changes that occur during acclimation, including recent proteomic and metabolomic studies, have identified changes in carbohydrate and compatible solute concentrations, membrane lipid composition, and proteins, notably dehydrins, that may have important roles in survival at extreme low temperature (ELT). Consideration of the biophysical mechanisms of membrane stress and strain lead to the following hypotheses for cellular and molecular mechanisms of survival at ELT: (1) Changes in lipid composition stabilize membranes at temperatures above the lipid phase transition temperature (-20 to -30°C), preventing phase changes that result in irreversible injury.

View Article and Find Full Text PDF

Siberian spruce (Picea obovata) is one of several boreal conifer species that can survive at extremely low temperatures (ELTs). When fully acclimated, its tissues can survive immersion in liquid nitrogen. Relatively little is known about the biochemical and biophysical strategies of ELT survival.

View Article and Find Full Text PDF

To investigate the role of dehydrins (DHNs) in extreme low-temperature (LT) tolerance, we sampled needle tissue of Siberian spruce (Picea obovata Ledeb.) from trees growing in an arboretum in Trondheim, Norway from August 2006 to April 2007 and tracked changes in LT tolerance via relative electrolyte leakage. We used western blotting to estimate relative amounts of proteins binding a DHN K-segment antibody, measured relative amounts of nine transcripts for small (<25 kDa) DHNs by quantitative reverse transcription-polymerase chain reaction (PCR) using primers developed for DHN transcripts in a closely related species, Picea abies (L.

View Article and Find Full Text PDF

Differential expression of proteins in needles of the extreme freeze tolerant conifer Picea obovata during September, October and November was analyzed using DIGE technology and multivariate analysis. More than 1200 spots were detected, and the abundance of 252 of these spots was significantly altered during the course of acclimation. The 252 spots were clustered into five distinct expression profiles.

View Article and Find Full Text PDF

To provide baseline data for physiological studies of extreme low-temperature (LT) tolerance in boreal conifers, we profiled LT stress responses, liquid nitrogen (LN(2))-quench tolerance, and sugar concentrations in foliage of boreal-temperate species pairs in the genera Abies, Picea and Pinus, growing in an arboretum in a temperate oceanic climate from August 2006 through April 2007. The boreal species acclimated more rapidly and deeply than the temperate species, acquiring LN(2)-quench tolerance by late November, despite unusually warm conditions throughout the autumn and early winter. Maximum LT tolerance in the temperate species was in the -25 to -35 degrees C range, and was reached only after a period of freezing temperatures in late January and February.

View Article and Find Full Text PDF

Strawberry Fragaria x ananassa (cv. Korona) was inoculated with Botrytis cinerea by dipping berries in a conidial suspension. Colonization by the pathogen was monitored using real-time PCR, ELISA and ergosterol assays, the first showing the highest sensitivity.

View Article and Find Full Text PDF

•  Polygalacturonase-inhibiting proteins (PGIPs) have been demonstrated to play a role in host defence in several plants. •  The PGIP now cloned from strawberry (Fragaria × ananassa) showed a high degree of homology to other fruit PGIPs. The gene expression of strawberry PGIP was monitored in healthy leaves, flowers and fruit at different maturity stages.

View Article and Find Full Text PDF