Raman spectroscopy is widely used in monitoring and controlling cell cultivations for biopharmaceutical drug manufacturing. However, its implementation for culture monitoring in the cell line development stage has received little attention. Therefore, the impact of clonal differences, such as productivity and growth, on the prediction accuracy and transferability of Raman calibration models is not yet well described.
View Article and Find Full Text PDFRipening is the most crucial process step in cheese manufacturing and constitutes multiple biochemical alterations that describe the final cheese quality and its perceived sensory attributes. The assessment of the cheese-ripening process is challenging and requires the effective analysis of a multitude of biochemical changes occurring during the process. This study monitored the biochemical and sensory attribute changes of paraffin wax-covered long-ripening hard cheeses (n = 79) during ripening by collecting samples at different stages of ripening.
View Article and Find Full Text PDFBackground: Monoclonal antibodies (mAbs) are leading types of 'blockbuster' biotherapeutics worldwide; they have been successfully used to treat various cancers and chronic inflammatory and autoimmune diseases. Biotherapeutics process development and manufacturing are complicated due to lack of understanding the factors that impact cell productivity and product quality attributes. Understanding complex interactions between cells, media, and process parameters on the molecular level is essential to bring biomanufacturing to the next level.
View Article and Find Full Text PDFThere is a growing interest in continuous processing of the biopharmaceutical industry. However, the technology transfer from traditional batch-based processes is considered a challenge as protocol and tools still remain to be established for their usage at the manufacturing scale. Here, we present a model-based approach to design optimized perfusion cultures of Chinese Hamster Ovary cells using only the knowledge captured during small-scale fed-batch experiments.
View Article and Find Full Text PDFSubcellular localization of Ribonucleic Acid (RNA) molecules provide significant insights into the functionality of RNAs and helps to explore their association with various diseases. Predominantly developed single-compartment localization predictors (SCLPs) lack to demystify RNA association with diverse biochemical and pathological processes mainly happen through RNA co-localization in multiple compartments. Limited multi-compartment localization predictors (MCLPs) manage to produce decent performance only for target RNA class of particular sub-type.
View Article and Find Full Text PDFBackground And Objective: Interactions of long non-coding ribonucleic acids (lncRNAs) with micro-ribonucleic acids (miRNAs) play an essential role in gene regulation, cellular metabolic, and pathological processes. Existing purely sequence based computational approaches lack robustness and efficiency mainly due to the high length variability of lncRNA sequences. Hence, the prime focus of the current study is to find optimal length trade-offs between highly flexible length lncRNA sequences.
View Article and Find Full Text PDFThe coronavirus disease 2019, COVID-19, is a complex disease with a wide range of symptoms from asymptomatic infections to severe acute respiratory syndrome with lethal outcome. Individual factors such as age, sex, and comorbidities increase the risk for severe infections, but other aspects, such as genetic variations, are also likely to affect the susceptibility to SARS-CoV-2 infection and disease severity. Here, we used a human 3D lung cell model based on primary cells derived from multiple donors to identity host factors that regulate SARS-CoV-2 infection.
View Article and Find Full Text PDFAim: To assess the strength of associations between interrelated perinatal risk factors and mortality in very preterm infants.
Methods: Information on all live-born infants delivered in Sweden at 22-31 weeks of gestational age (GA) from 2011 to 2019 was gathered from the Swedish Neonatal Quality Register, excluding infants with major malformations or not resuscitated because of anticipated poor prognosis. Twenty-seven perinatal risk factors available at birth were exposures and in-hospital mortality outcome.
Understanding the mechanisms of pollutant removal in Wastewater Treatment Plants (WWTPs) is crucial for controlling effluent quality efficiently. However, the numerous treatment units, operational factors, and the underlying interactions between these units and factors usually obfuscate the comprehensive and precise understanding of the processes. We have previously proposed a machine learning (ML) framework to uncover complex cause-and-effect relationships in WWTPs.
View Article and Find Full Text PDFLight microscopy combined with well-established protocols of two-dimensional cell culture facilitates high-throughput quantitative imaging to study biological phenomena. Accurate segmentation of individual cells in images enables exploration of complex biological questions, but can require sophisticated imaging processing pipelines in cases of low contrast and high object density. Deep learning-based methods are considered state-of-the-art for image segmentation but typically require vast amounts of annotated data, for which there is no suitable resource available in the field of label-free cellular imaging.
View Article and Find Full Text PDFMetabolic phenotyping is an important tool in translational biomedical research. The advanced analytical technologies commonly used for phenotyping, including mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy, generate complex data requiring tailored statistical analysis methods. Detailed protocols have been published for data acquisition by liquid NMR, solid-state NMR, ultra-performance liquid chromatography (LC-)MS and gas chromatography (GC-)MS on biofluids or tissues and their preprocessing.
View Article and Find Full Text PDFDue to the intrinsic complexity of wastewater treatment plant (WWTP) processes, it is always challenging to respond promptly and appropriately to the dynamic process conditions in order to ensure the quality of the effluent, especially when operational cost is a major concern. Machine Learning (ML) methods have therefore been used to model WWTP processes in order to avoid various shortcomings of conventional mechanistic models. However, to the best of the authors' knowledge, no ML applications have focused on investigating how operational factors can affect effluent quality.
View Article and Find Full Text PDFMachine vision is a powerful technology that has become increasingly popular and accurate during the last decade due to rapid advances in the field of machine learning. The majority of machine vision applications are currently found in consumer electronics, automotive applications, and quality control, yet the potential for bioprocessing applications is tremendous. For instance, detecting and controlling foam emergence is important for all upstream bioprocesses, but the lack of robust foam sensing often leads to batch failures from foam-outs or overaddition of antifoam agents.
View Article and Find Full Text PDFBackground: For multivariate data analysis involving only two input matrices (e.g., X and Y), the previously published methods for variable influence on projection (e.
View Article and Find Full Text PDFThe polysaccharides of the sterile conk of (Chaga) have demonstrated multiple bioactivities. The mycelium of this basidiomycete, obtained after submerged cultivation, has been considered a feasible alternative to the sterile conk for the production of polysaccharides. However, previous research has paid little attention to the differences in the structures of polymers obtained from the different resources.
View Article and Find Full Text PDFBackground: Bioconversion of wood into bioproducts and biofuels is hindered by the recalcitrance of woody raw material to bioprocesses such as enzymatic saccharification. Targeted modification of the chemical composition of the feedstock can improve saccharification but this gain is often abrogated by concomitant reduction in tree growth.
Results: In this study, we report on transgenic hybrid aspen (Populus tremula × tremuloides) lines that showed potential to increase biomass production both in the greenhouse and after 5 years of growth in the field.
MicroRNAs (miRNA) are small noncoding RNA sequences consisting of about 22 nucleotides that are involved in the regulation of almost 60% of mammalian genes. Presently, there are very limited approaches for the visualization of miRNA locations present inside cells to support the elucidation of pathways and mechanisms behind miRNA function, transport, and biogenesis. MIRLocator, a state-of-the-art tool for the prediction of subcellular localization of miRNAs makes use of a sequence-to-sequence model along with pretrained k-mer embeddings.
View Article and Find Full Text PDFThe number of national reference populations that are whole-genome sequenced are rapidly increasing. Partly driving this development is the fact that genetic disease studies benefit from knowing the genetic variation typical for the geographical area of interest. A whole-genome sequenced Swedish national reference population (n = 1000) has been recently published but with few samples from northern Sweden.
View Article and Find Full Text PDFData integration has been proven to provide valuable information. The information extracted using data integration in the form of multiblock analysis can pinpoint both common and unique trends in the different blocks. When working with small multiblock datasets the number of possible integration methods is drastically reduced.
View Article and Find Full Text PDFThe expression of polygalacturonase inhibiting protein 1 (VviPGIP1) in has been linked to modifications at the cell wall level. Previous investigations have shown an upregulation of the lignin biosynthesis pathway and reorganisation of arabinoxyloglucan composition. This suggests cell wall tightening occurs, which may be linked to defence priming responses.
View Article and Find Full Text PDFPlant cell walls are composed of a number of coextensive polysaccharide-rich networks (i.e., pectin, hemicellulose, protein).
View Article and Find Full Text PDFBackground: Selecting the proper parameter settings for bioinformatic software tools is challenging. Not only will each parameter have an individual effect on the outcome, but there are also potential interaction effects between parameters. Both of these effects may be difficult to predict.
View Article and Find Full Text PDFThe development of methods of non-invasive measurement of neck muscle function remains a priority in the clinical sciences. In this study, dorsal neck muscle deformation vs time curves (deformation area) were evaluated against incremental force, recorded from non-invasive real-time ultrasound measurement. The results revealed subject-specific moderate to strong linear or non-linear relationships between deformation and force.
View Article and Find Full Text PDFCraterellus tubaeformis (Funnel Chanterelle) is among the most abundant wild mushrooms in Finland. Three polysaccharide fractions were sequentially extracted from the fruiting bodies of C. tubaeformis, using hot water, 2% and 25% KOH solutions, respectively, and purified.
View Article and Find Full Text PDF