Publications by authors named "Truyen Quach"

Biomass crops engineered to accumulate energy-dense triacylglycerols (TAG or 'vegetable oils') in their vegetative tissues have emerged as potential feedstocks to meet the growing demand for renewable diesel and sustainable aviation fuel (SAF). Unlike oil palm and oilseed crops, the current commercial sources of TAG, vegetative tissues, such as leaves and stems, only transiently accumulate TAG. In this report, we used grain (Texas430 or TX430) and sugar-accumulating 'sweet' (Ramada) genotypes of sorghum, a high-yielding, environmentally resilient biomass crop, to accumulate TAG in leaves and stems.

View Article and Find Full Text PDF

Enhancing crop water use efficiency (WUE) is a key target trait for climatic resilience and expanding cultivation on marginal lands. Engineering lower stomatal density to reduce stomatal conductance (gs) has improved WUE in multiple C3 crop species. However, reducing gs in C3 species often reduces photosynthetic carbon gain.

View Article and Find Full Text PDF

Cas9-based genome editing is a powerful genetic tool for loci specifically targeted for genome modification. This chapter describes up-to-date protocols using Cas9-based genome editing technology, including vector construction with GoldenBraid assembly, Agrobacterium-mediated soybean transformation, and identification of editing in the genome.

View Article and Find Full Text PDF

Soybean oil is one of the most consumed vegetable oils worldwide. Genetic improvement of its concentration in seeds has been historically pursued due to its direct association with its market value. Engineering attempts aiming to increase soybean seed oil presented different degrees of success that varied with the genetic design and the specific variety considered.

View Article and Find Full Text PDF

Soybean is the most important source of protein meal worldwide and the quantitative trait loci (QTL) cqSeed protein‐003 on chromosome 20 exerts the greatest additive effect of any protein QTL mapped in the crop. Through genetic mapping and candidate gene downregulation, we identified that an insertion/deletion variant in is the likely gene that underlies this important QTL.

View Article and Find Full Text PDF

Scope: Previous studies have suggested that diets rich in omega-3 and low in omega-6 long-chain polyunsaturated fatty acids (PUFAs) can limit the development of metabolic syndrome (MetS). Transgenic soybeans yielding oils enriched for omega-3 PUFAs represent a new and readily-available option for incorporating omega-3 PUFAs into diets to provide health benefits.

Methods And Results: Transgenic soybean oils, enriched for either stearidonic acid (SDA) or eicosapentaenoic acid (EPA), are incorporated into diets to test their effects on limiting the development of MetS in a mouse model of diet-induced obesity.

View Article and Find Full Text PDF

Drought stress is the major limiting factor in agriculture. Wheat, which is the most widely grown crop in the world, is predominantly cultivated in drought-prone rainfed environments. Since roots play a critical role in water uptake, root response to water limitations is an important component for enhancing wheat adaptation.

View Article and Find Full Text PDF

Wheat streak mosaic virus (WSMV) and triticum mosaic virus (TriMV) are economically important viruses of wheat ( L.), causing significant yield losses in the Great Plains region of the United States. These two viruses are transmitted by wheat curl mites, which often leads to mixed infections with synergistic interaction in grower fields that exacerbates yield losses.

View Article and Find Full Text PDF

The expression of a barley alanine aminotransferase gene impacts agronomic outcomes in a C3 crop, wheat. The use of nitrogen-based fertilizers has become one of the major agronomic inputs in crop production systems. Strategies to enhance nitrogen assimilation and flux in planta are being pursued through the introduction of novel genetic alleles.

View Article and Find Full Text PDF

Nitrogen is essential for plant growth and development. Improving the ability of plants to acquire and assimilate nitrogen more efficiently is a key agronomic parameter that will augment sustainability in agriculture. A transcription factor approach was pursued to address improvement of nitrogen use efficiency in two major commodity crops.

View Article and Find Full Text PDF

Nuclear factor-Y (NF-Y), a heterotrimeric transcription factor, is composed of NF-YA, NF-YB and NF-YC proteins. In plants, there are usually more than 10 genes for each family and their members have been identified to be key regulators in many developmental and physiological processes controlling gametogenesis, embryogenesis, nodule development, seed development, abscisic acid (ABA) signaling, flowering time, primary root elongation, blue light responses, endoplasmic reticulum (ER) stress response and drought tolerance. Taking the advantages of the recent soybean genome draft and information on functional characterizations of nuclear factor Y (NF-Y) transcription factor family in plants, we identified 21 GmNF-YA, 32 GmNF-YB, and 15 GmNF-YC genes in the soybean (Glycine max) genome.

View Article and Find Full Text PDF
Article Synopsis
  • - Drought significantly impacts soybean productivity, prompting research into genetic modifications to improve stress tolerance by introducing the DREB1D transcription factor from Arabidopsis thaliana using Agrobacterium-mediated gene transfer.
  • - Transgenic soybeans with an ABA-inducible promoter exhibited increased transgene expression under drought but had reduced overall leaf area and biomass compared to non-transgenic plants when well-watered.
  • - Under drought conditions, the transgenic plants showed improved water retention, slower wilting, higher survival rates, and better leaf cell membrane stability, highlighting the potential for engineering drought-resistant soybeans.
View Article and Find Full Text PDF

In Arabidopsis, NAC (NAM, ATAF and CUC) transcription factors have been found to promote lateral root number through the auxin signaling pathway. In the present study, the role of water stress-inducible soybean GmNAC003 and GmNAC004 genes in the enhancement of lateral root development under water deficit conditions was investigated. Both genes were highly expressed in roots, leaves and flowers of soybean and were strongly induced by water stress and moderately induced by a treatment with abscisic acid (ABA).

View Article and Find Full Text PDF

Quantitative RT-PCR can be a very sensitive and powerful technique for measuring differential gene expression. Changes in gene expression induced by abiotic stresses are complex and multifaceted, which make determining stably expressed genes for data normalization difficult. To identify the most suitable reference genes for abiotic stress studies in soybean, 13 candidate genes collected from literature were evaluated for stability of expression under dehydration, high salinity, cold and ABA (abscisic acid) treatments using delta CT and geNorm approaches.

View Article and Find Full Text PDF

Sterol C24 methyltransferase (SMT2) genes governing the pattern of phytosterols synthesized in higher plants have been studied in Glycine seedlings and wild-type and engineered Arabidopsis thaliana plants. The SMT2 genes of soybean (SMT2-1 and SMT2-2) previously cloned and characterized (Neelakandan et al. 2009) were shown to complement the SMT deficient cvp1 mutant Arabidopsis plants, consistent with their role in regulation of 24-alkyl sterol-controlled plant physiology.

View Article and Find Full Text PDF

Drought is detrimental to plant growth and development, and often results in significant losses to the yields of economically important crops such as soybeans (Glycine max L.). NAC transcription factors (TFs), which consist of a large family of plant-specific TFs, have been reported to enhance drought tolerance in a number of plants.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiondcd0gmb294sgob8sh2nu6mtieunvef0h): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once