Publications by authors named "Trupti Agrawal"

The clinical success of CRISPR therapies hinges on the safety and efficacy of Cas proteins. The Cas9 from Francisella novicida (FnCas9) is highly precise, with a negligible affinity for mismatched substrates, but its low cellular targeting efficiency limits therapeutic use. Here, we rationally engineer the protein to develop enhanced FnCas9 (enFnCas9) variants and broaden their accessibility across human genomic sites by ~3.

View Article and Find Full Text PDF

The Stargardt's Disease, Type 1 (STGD1) is associated with the loss of function mutations in ABCA4. This gene codes for a retina-specific, ATP-binding cassette (ABC) family transporter, involved in the transport of the key visual cycle intermediate, all-trans-retinaldehyde (atRAL), across the photoreceptor cell membranes. Here, we report the establishment of a patient-specific, iPSC line (LVPEIi008-A), that carries a homozygous nonsense mutation at (c.

View Article and Find Full Text PDF

Leber Congenital Amaurosis 2 is an early onset retinal dystrophy that occurs due to mutation in RPE65 gene. Here, we report the generation of two patient specific induced pluripotent stem cell lines harboring nonsense mutations in exon 7 (c.646A > T) and exon 9 (c.

View Article and Find Full Text PDF

Mutations in ABCA4 gene leads to the most common form of an inherited retinal disease namely, the Stargardt disease, type 1. Here, we report the generation of two different patient-specific induced pluripotent stem cell lines (LVPEIi007-B and LVPEIi008-B), carrying an identical homozygous mutation, (c.6088C>T) within the exon 44 of ABCA4 gene.

View Article and Find Full Text PDF

Complete loss of RB1 causes retinoblastoma. Here, we report the generation of three RB1 iPSC lines using CRISPR/Cas9 based editing at exon 18 of RB1 in a healthy control hiPSC line. The edited cells were clonally expanded, genotyped and characterized to establish the mutant lines.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers created an induced pluripotent stem cell (iPSC) line named LVPEIi002-A from a patient with a hereditary mutation in the RB1 gene.
  • * The LVPEIi002-A iPSC line shows key features like maintaining its stem cell properties, normal genetic structure, and the ability to form different cell types.
View Article and Find Full Text PDF

Pluripotent stem cells can generate complex tissue organoids that are useful for in vitro disease modeling studies and for developing regenerative therapies. This protocol describes a simpler, robust, and stepwise method of generating retinal organoids in a hybrid culture system consisting of adherent monolayer cultures during the first 4 weeks of retinal differentiation till the emergence of distinct, self-organized eye field primordial clusters (EFPs). Further, the doughnut-shaped, circular, and translucent neuro-retinal islands within each EFP are manually picked and cultured under suspension using non-adherent culture dishes in a retinal differentiation medium for 1-2 weeks to generate multilayered 3D optic cups (OC-1M).

View Article and Find Full Text PDF