In an effort to pursue a green synthesis approach, the biosynthesis of nano-silver (nAg) using plant extracts has garnered significant attention, particularly for its antimicrobial resistance and medical applications, which have been the focus of numerous studies. However, there remains a gap in surface catalytic studies, especially regarding the hydrogenation of 4-nitrophenol. While some studies have addressed catalytic kinetics, thermodynamic aspects have been largely overlooked, leaving the catalytic mechanisms of biosynthesized nAg unclear.
View Article and Find Full Text PDFCellulose, the most abundant natural polymer on earth, has recently gained attention for a large spectrum of applications. At a nanoscale, nanocelluloses (mainly involving cellulose nanocrystals or cellulose nanofibrils) possess many predominant features, such as highly thermal and mechanical stability, renewability, biodegradability and non-toxicity. More importantly, the surface modification of such nanocelluloses can be efficiently obtained based on the native surface hydroxyl groups, acting as metal ions chelators.
View Article and Find Full Text PDFAs the most abundant natural biopolymer on earth, celluloses have long-term emerged as a capable platform for diverse purposes. In the context of metal nanoparticles applied to catalysis, the alternatives to traditional catalyst supports by using biomass-derived renewable materials, likely nanocelluloses, have been paid a great effort, in spite of being less exploited. In this study, cellulose nanocrystals were isolated from corn leaf chemical treatment involving alkalizing, bleaching and acid hydrolysis.
View Article and Find Full Text PDFIn this study, green orange peel (GOP) was feasibly evidenced in preparing selenium nanoparticles (SeNPs). Acting as reducing agents, polyphenolic compounds were extracted from GOP at the optimal extraction conditions (at 70 °C for 1.5 h, mass ratio of dried orange peel/distilled water of 5/100).
View Article and Find Full Text PDFMetal nanoparticles have been deeply studied in the last few decades due to their attractive physical and chemical properties, finding a wide range of applications in several fields. Among them, well-defined nano-structures can combine the main advantages of heterogeneous and homogeneous catalysts. Especially, catalyzed multi-step processes for the production of added-value chemicals represent straightforward synthetic methodologies, including tandem and sequential reactions that avoid the purification of intermediate compounds.
View Article and Find Full Text PDFWe report a Rh-catalyzed hydroaminomethylation reaction of terminal alkenes in glycerol that proceeds efficiently under mild conditions to produce the corresponding amines in relatively high selectivity towards linear amines, moderate to excellent yields by using a low catalyst loading (1 mol % [Rh], 2 mol % phosphine) and relative low pressure (H /CO, 1:1, total pressure 10 bar). This work sheds light on the importance of glycerol in enabling enamine reduction via hydrogen transfer. Moreover, evidence for the crucial role of Rh as chemoselective catalyst in the condensation step has been obtained for the first time in the frame of the hydroaminomethylation reaction by precluding deleterious aldol condensation reactions.
View Article and Find Full Text PDF