The transition of the inflow jet to turbulence is crucial in understanding the pathology of brain aneurysms. Previous works Le et al. (2010, 2013) have shown evidence for a highly dynamic inflow jet in the ostium of brain aneurysms.
View Article and Find Full Text PDFThe classical Starling Resistor model has been the paradigm of airway collapse in obstructive sleep apnea (OSA) for the last 30 years. Its theoretical framework is grounded on the wave-speed flow limitation (WSFL) theory. Recent observations of negative effort dependence in OSA patients violate the predictions of the WSFL theory.
View Article and Find Full Text PDFWe develop a novel large-scale kinematic model for animating the left ventricle (LV) wall and use this model to drive the fluid-structure interaction (FSI) between the ensuing blood flow and a mechanical heart valve prosthesis implanted in the aortic position of an anatomic LV/aorta configuration. The kinematic model is of lumped type and employs a cell-based, FitzHugh-Nagumo framework to simulate the motion of the LV wall in response to an excitation wavefront propagating along the heart wall. The emerging large-scale LV wall motion exhibits complex contractile mechanisms that include contraction (twist) and expansion (untwist).
View Article and Find Full Text PDFWe carry out high-resolution laboratory experiments and numerical simulations to investigate the dynamics of unsteady vortex formation across the neck of an anatomic in vitro model of an intracranial aneurysm. A transparent acrylic replica of the aneurysm is manufactured and attached to a pulse duplicator system in the laboratory. Time-resolved three-dimensional three-component velocity measurements are obtained inside the aneurysm sac under physiologic pulsatile conditions.
View Article and Find Full Text PDFRecent computational methods enabling patient-specific simulations of native and prosthetic heart valves are reviewed. Emphasis is placed on two critical components of such methods: (1) anatomically realistic finite element models for simulating the structural dynamics of heart valves; and (2) fluid structure interaction methods for simulating the performance of heart valves in a patient-specific beating left ventricle. It is shown that the significant progress achieved in both fronts paves the way toward clinically relevant computational models that can simulate the performance of a range of heart valves, native and prosthetic, in a patient-specific left heart environment.
View Article and Find Full Text PDFEur J Mech B Fluids
September 2012
We study the formation of the mitral vortex ring during early diastolic filling in a patient-specific left ventricle using direct numerical simulation. The geometry of the left ventricle is reconstructed from Magnetic Resonance Imaging (MRI). The heart wall motion is modeled by a cell-based activation methodology, which yields physiologic kinematics with heart rate equal to 52 beats per minute.
View Article and Find Full Text PDFWe present Interactive Slice World-in-Miniature (WIM), a framework for navigating and interrogating volumetric data sets using an interface enabled by a virtual reality environment made of two display surfaces: an interactive multitouch table, and a stereoscopic display wall. The framework addresses two current challenges in immersive visualization: 1) providing an appropriate overview+detail style of visualization while navigating through volume data, and 2) supporting interactive querying and data exploration, i.e.
View Article and Find Full Text PDFHigh-resolution numerical simulations are carried out to systematically investigate the effect of the incoming flow waveform on the hemodynamics and wall shear stress patterns of an anatomic sidewall intracranial aneurysm model. Various wave forms are constructed by appropriately scaling a typical human waveform such that the waveform maximum and time-averaged Reynolds numbers, the Womersley number (α), and the pulsatility index (PI) are systematically varied within the human physiologic range. We show that the waveform PI is the key parameter that governs the vortex dynamics across the aneurysm neck and the flow patterns within the dome.
View Article and Find Full Text PDF