Publications by authors named "Trumbo D"

Adaptive evolution can facilitate species' range expansions across environmentally heterogeneous landscapes. However, serial founder effects can limit the efficacy of selection, and the evolution of increased dispersal during range expansions may result in gene flow swamping local adaptation. Here, we study how genetic drift, gene flow and selection interact during the cane toad's (Rhinella marina) invasion across the heterogeneous landscape of Australia.

View Article and Find Full Text PDF

Hunting mortality can affect population abundance, demography, patterns of dispersal and philopatry, breeding, and genetic diversity. We investigated the effects of hunting on the reproduction and genetic diversity in a puma population in western Colorado, USA. We genotyped over 11,000 single nucleotide polymorphisms (SNPs), using double-digest, restriction site-associated DNA sequencing (ddRADseq) in 291 tissue samples collected as part of a study on the effects of hunting on puma population abundance and demography in Colorado from 2004 to 2014.

View Article and Find Full Text PDF

Wildlife diseases are a major global threat to biodiversity. Boreal toads (Anaxyrus [Bufo] boreas) are a state-endangered species in the southern Rocky Mountains of Colorado and New Mexico, and a species of concern in Wyoming, largely due to lethal skin infections caused by the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd). We performed conservation and landscape genomic analyses using single nucleotide polymorphisms from double-digest, restriction site-associated DNA sequencing in combination with the development of the first boreal toad (and first North American toad) reference genome to investigate population structure, genomic diversity, landscape connectivity and adaptive divergence.

View Article and Find Full Text PDF

We investigated the potential mechanisms driving habitat-linked genetic divergence within a bird species endemic to a single 250-km island. The island scrub-jay (Aphelocoma insularis) exhibits microgeographic divergence in bill morphology across pine-oak ecotones on Santa Cruz Island, California (USA), similar to adaptive differences described in mainland congeners over much larger geographic scales. To test whether individuals exhibit genetic differentiation related to habitat type and divergence in bill length, we genotyped over 3000 single nucleotide polymorphisms in 123 adult island scrub-jay males from across Santa Cruz Island using restriction site-associated DNA sequencing.

View Article and Find Full Text PDF

Hunting can fundamentally alter wildlife population dynamics but the consequences of hunting on pathogen transmission and evolution remain poorly understood. Here, we present a study that leverages a unique landscape-scale quasi-experiment coupled with pathogen-transmission tracing, network simulation and phylodynamics to provide insights into how hunting shapes feline immunodeficiency virus (FIV) dynamics in puma (Puma concolor). We show that removing hunting pressure enhances the role of males in transmission, increases the viral population growth rate and increases the role of evolutionary forces on the pathogen compared to when hunting was reinstated.

View Article and Find Full Text PDF

Phenotypic and genetic divergence are shaped by the homogenizing effects of gene flow and the differentiating processes of genetic drift and local adaptation. Herein, we examined the mechanisms that underlie phenotypic (size and color) and genetic divergence in 35 populations (535 individuals) of the poison frog Epipedobates anthonyi along four elevational gradients (0-1800 m asl) in the Ecuadorian Andes. We found phenotypic divergence in size and color despite relatively low genetic divergence at neutral microsatellite loci.

View Article and Find Full Text PDF

We introduce a new R package "MrIML" ("Mister iml"; Multi-response Interpretable Machine Learning). MrIML provides a powerful and interpretable framework that enables users to harness recent advances in machine learning to quantify multilocus genomic relationships, to identify loci of interest for future landscape genetics studies, and to gain new insights into adaptation across environmental gradients. Relationships between genetic variation and environment are often nonlinear and interactive; these characteristics have been challenging to address using traditional landscape genetic approaches.

View Article and Find Full Text PDF

Urban expansion can fundamentally alter wildlife movement and gene flow, but how urbanization alters pathogen spread is poorly understood. Here, we combine high resolution host and viral genomic data with landscape variables to examine the context of viral spread in puma (Puma concolor) from two contrasting regions: one bounded by the wildland urban interface (WUI) and one unbounded with minimal anthropogenic development (UB). We found landscape variables and host gene flow explained significant amounts of variation of feline immunodeficiency virus (FIV) spread in the WUI, but not in the unbounded region.

View Article and Find Full Text PDF

Urbanization is a major factor driving habitat fragmentation and connectivity loss in wildlife. However, the impacts of urbanization on connectivity can vary among species and even populations due to differences in local landscape characteristics, and our ability to detect these relationships may depend on the spatial scale at which they are measured. Bobcats (Lynx rufus) are relatively sensitive to urbanization and the status of bobcat populations is an important indicator of connectivity in urban coastal southern California.

View Article and Find Full Text PDF

Apex predators are important indicators of intact natural ecosystems. They are also sensitive to urbanization because they require broad home ranges and extensive contiguous habitat to support their prey base. Pumas (Puma concolor) can persist near human developed areas, but urbanization may be detrimental to their movement ecology, population structure, and genetic diversity.

View Article and Find Full Text PDF

The outbreak and transmission of disease-causing pathogens are contributing to the unprecedented rate of biodiversity decline. Recent advances in genomics have coalesced into powerful tools to monitor, detect, and reconstruct the role of pathogens impacting wildlife populations. Wildlife researchers are thus uniquely positioned to merge ecological and evolutionary studies with genomic technologies to exploit unprecedented "Big Data" tools in disease research; however, many researchers lack the training and expertise required to use these computationally intensive methodologies.

View Article and Find Full Text PDF

Loss of fitness can be a consequence of selection for rapid dispersal ability in invasive species. Increased prevalence of spinal arthritis may occur in cane toad populations at the invasion front as a cost of increased invasiveness, but our knowledge of the ecological drivers of this condition is lacking. We aimed to determine the factors explaining the prevalence of spinal arthritis in populations across the Australian landscape.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how a genetic variant in the PAR4 receptor affects platelet activation, showing heightened activity in black individuals compared to white individuals due to a specific amino acid difference at position 120.
  • It was found that the PAR4-Thr120 variant enhances G protein activation more than PAR4-Ala120, making traditional antiplatelet treatments less effective in individuals with the Thr120 variant.
  • The findings indicate that individuals with the PAR4-Thr120 variant may have a higher risk of thrombus formation, suggesting they could be resistant to common antiplatelet drugs that target specific receptors.
View Article and Find Full Text PDF

Urban expansion has widespread impacts on wildlife species globally, including the transmission and emergence of infectious diseases. However, there is almost no information about how urban landscapes shape transmission dynamics in wildlife. Using an innovative phylodynamic approach combining host and pathogen molecular data with landscape characteristics and host traits, we untangle the complex factors that drive transmission networks of feline immunodeficiency virus (FIV) in bobcats (Lynx rufus).

View Article and Find Full Text PDF

The persistence of small populations is influenced by genetic structure and functional connectivity. We used two network-based approaches to understand the persistence of the northern Idaho ground squirrel ( and the southern Idaho ground squirrel (), two congeners of conservation concern. These graph theoretic approaches are conventionally applied to social or transportation networks, but here are used to study population persistence and connectivity.

View Article and Find Full Text PDF

Understanding factors that cause species' geographic range limits is a major focus in ecology and evolution. The central marginal hypothesis (CMH) predicts that species cannot adapt to conditions beyond current geographic range edges because genetic diversity decreases from core to edge due to smaller, more isolated edge populations. We employed a population genomics framework using 24 235-33 112 SNP loci to test major predictions of the CMH in the ongoing invasion of the cane toad (Rhinella marina) in Australia.

View Article and Find Full Text PDF

The exponential increase in available neural data has combined with the exponential growth in computing ("Moore's law") to create new opportunities to understand neural systems at large scale and high detail. The ability to produce large and sophisticated simulations has introduced unique challenges to neuroscientists. Computational models in neuroscience are increasingly broad efforts, often involving the collaboration of experts in different domains.

View Article and Find Full Text PDF

A species' genetic structure often varies in response to ecological and landscape processes that differ throughout the species' geographic range, yet landscape genetics studies are rarely spatially replicated. The Cope's giant salamander (Dicamptodon copei) is a neotenic, dispersal-limited amphibian with a restricted geographic range in the Pacific northwestern USA. We investigated which landscape factors affect D.

View Article and Find Full Text PDF

Polymerization of 1,2-anhydro-3,4,6-tri-O-benzyl-beta-D-mannopyranose under acid catalysis has led to a series of polymers varying in anomeric configuration from approximately 90% alpha to 70% beta. Optical rotations follow 13C-n.m.

View Article and Find Full Text PDF

Three groups of subjects were involved in estimating movement amplitudes. Two of these groups used the method of estimation, labeling the amplitudes of simple linear movements in inches. One group made active movements, the other experienced passive movement of the arm.

View Article and Find Full Text PDF

A solar magnetograph employing as detectors a pair of self-scanning 512-element integrated diode arrays is described. Coupled to a 1.5-m telescope, photospheric flux as small as 5(10(16)) maxwells is detected, corresponding in intensity to DeltaI/I = 3(10(-4)) at lambda 0.

View Article and Find Full Text PDF