Publications by authors named "Trull J"

Nonlinear silicon photonics offers unique abilities to generate, manipulate and detect optical signals in nano-devices, with applications based on field localization and large third order nonlinearity. However, at the nanoscale, inefficient nonlinear processes, absorption, and the lack of realistic models limit the nano-engineering of silicon. Here we report measurements of second and third harmonic generation from undoped silicon membranes.

View Article and Find Full Text PDF

Understanding how light interacts with matter at the nanoscale is pivotal if one is to properly engineer nano-antennas, filters and other devices whose geometrical features approach atomic size. We report experimental results on second and third harmonic generation from 20 nm- and 70 nm-thick gold layers, for TE- and TM-polarized incident light pulses. We discuss the relative roles that bound electrons and an intensity dependent free electron density (hot electrons) play in third harmonic generation.

View Article and Find Full Text PDF

In this work, we numerically investigate the diffraction management of longitudinal elastic waves propagating in a two-dimensional metallic phononic crystal. We demonstrate that this structure acts as an "ultrasonic lens", providing self-collimation or focusing effect at a certain distance from the crystal output. We implement this directional propagation in the design of a coupling device capable to control the directivity or focusing of ultrasonic waves propagation inside a target object.

View Article and Find Full Text PDF

We demonstrate a novel dispersion-scan (d-scan) scheme for single-shot temporal characterization of ultrashort laser pulses. The novelty of this method relies on the use of a highly dispersive crystal featuring antiparallel nonlinear domains with a random distribution and size. This crystal, capable of generating a transverse second-harmonic signal, acts simultaneously as the dispersive element and the nonlinear medium of the d-scan device.

View Article and Find Full Text PDF

Phase-locked second and third harmonic generation in the opaque region of a GaAs wafer is experimentally observed and analyzed both in transmission and reflection. These harmonic components, which are generated close to the surface, can propagate through an opaque material as long as the pump is tuned to a region of transparency or semitransparency and correspond to the inhomogeneous solutions of Maxwell's equations with nonlinear polarization sources. We show that measurement of the angular and polarization dependence of the observed harmonic components allows one to infer the different nonlinear mechanisms that trigger these processes, including not only the bulk nonlinearity but also the surface and magnetic Lorentz contributions, which usually are either hidden by the bulk contributions or assumed to be negligible.

View Article and Find Full Text PDF

This work envisages a detailed study of two-dimensional defect localization and reconstruction, using laser generated ultrasound and its application as a remotely controlled non-destructive testing method. As an alternative to full ultrasonic or full optical approaches, we propose a hybrid configuration where ultrasound is generated by impact of laser pulses, while the detection is done with conventional transducers. We implement this approach for defect reconstruction in metallic elements and show that it combines advantages of both photonic and ultrasonic devices, reducing the drawbacks of both methods.

View Article and Find Full Text PDF

Nondestructive testing of metallic objects that may contain embedded defects of different sizes is an important application in many industrial branches for quality control. Most of these techniques allow defect detection and its approximate localization, but few methods give enough information for its 3D reconstruction. Here we present a hybrid laser-transducer system that combines remote, laser-generated ultrasound excitation and noncontact ultrasonic transducer detection.

View Article and Find Full Text PDF

Laser-generated ultrasound is a modern non-destructive testing technique. It has been investigated over recent years as an alternative to classical ultrasonic methods, mainly in industrial maintenance and quality control procedures. In this study, the detection and reconstruction of internal defects in a metallic sample is performed by means of a time-frequency analysis of ultrasonic waves generated by a laser-induced thermal mechanism.

View Article and Find Full Text PDF

In the context of electromagnetism and nonlinear optical interactions, damping is generally introduced as a phenomenological, viscous term that dissipates energy, proportional to the temporal derivative of the polarization. Here, we follow the radiation reaction method presented in [Phys. Lett.

View Article and Find Full Text PDF

We have investigated multiple scattering of light in a disordered system based on liquid crystals for a temperature-controllable random laser. Coherent backscattering measurements at several temperatures have been well fitted by the theoretical model deduced for a random collection of spherical point scatters based on a diffusion approximation. The transport mean free path exclusively depends on the diffusivity of the liquid crystalline phase of the hybrid scattering system.

View Article and Find Full Text PDF

We present an indirect, non-destructive optical method for domain statistic characterization in disordered nonlinear crystals having homogeneous refractive index and spatially random distribution of ferroelectric domains. This method relies on the analysis of the wave-dependent spatial distribution of the second harmonic, in the plane perpendicular to the optical axis in combination with numerical simulations. We apply this technique to the characterization of two different media, Calcium Barium Niobate and Strontium Barium Niobate, with drastically different statistical distributions of ferroelectric domains.

View Article and Find Full Text PDF

In this paper, we report the temperature behavior of an optimized disordered photonic system-based liquid crystal by means of heat capacity and refractive index measurements. The scattering system is formed by a porous borosilicate glass random matrix (about 60%) infiltrated with a smectogenic liquid crystal (about 16%) and a small amount of laser dye (0.1%).

View Article and Find Full Text PDF

We present a novel single-shot cross-correlation technique based on the analysis of the transversally emitted second harmonic generation in crystals with random distribution and size of anti-parallel nonlinear domains. We implement it to the measurement of ultrashort laser pulses with unknown temporal duration and shape. We optimize the error of the pulse measurement by controlling the incident angle and beam width.

View Article and Find Full Text PDF

We experimentally demonstrate the recently predicted effect of near-field focusing for light beams from flat dielectric subwavelength gratings (SWGs). This SWGs were designed for visible light 532 nm and fabricated by direct laser writing in a negative photoresist, with the refractive index n=1.5 and the period d=314  nm.

View Article and Find Full Text PDF

The control of spatial propagation properties of narrow light beams such as divergence, focusing or imaging are main objectives in optics and photonics. In this letter, we propose and demonstrate experimentally a flat focusing mirror, based on an especially designed dielectric structure without any optical axis. More generally, it also enables imaging any light pattern in reflection.

View Article and Find Full Text PDF

We discuss the effect of second harmonic generation via the Čerenkov-like process in nonlinear bulk media and waveguides. We show that in both schemes the Čerenkov harmonic emission represents in fact a nonlinear Bragg diffraction process. It is therefore possible, for the first time, to describe the bulk and waveguide Čerenkov emission uniformly by considering the spatial modulation of the second-order nonlinear polarization.

View Article and Find Full Text PDF

Type I and type II second harmonic generation (SHG) of a beam transformed by the conical refraction phenomenon are presented. We show that, for type I, the second harmonic intensity pattern is a light ring with a point of null intensity while, for type II, the light ring possesses two dark regions. Taking into account the different two-photon processes involved in SHG, we have derived analytical expressions for the resulting transverse intensity patterns that are in good agreement with the experimental data.

View Article and Find Full Text PDF

We experimentally demonstrate full two-dimensional focalization of light beams at visible frequencies by a three-dimensional woodpile photonic crystal. The focalization (the flat lensing) with focal distances of the order of 50-70 μm is experimentally demonstrated. Experimental results are compared with numerical calculations and interpreted by harmonic expansion studies.

View Article and Find Full Text PDF

Accurate quantification of exposures to traffic-related air pollution in near-highway neighborhoods is challenging due to the high degree of spatial and temporal variation of pollutant levels. The objective of this study was to measure air pollutant levels in a near-highway urban area over a wide range of traffic and meteorological conditions using a mobile monitoring platform. The study was performed in a 2.

View Article and Find Full Text PDF

We study Čerenkov-type second-harmonic generation in a two-dimensional quasi-periodically poled LiNbO3 crystal. We employ a new geometry of interaction to observe simultaneous emission of multi-directional nonlinear Čerenkov radiation with comparable intensities. This opens a way to control the angle of Čerenkov emission by tailoring the nonlinearity of the material, which is otherwise intrinsically defined by dielectric constants of the medium and their dispersion.

View Article and Find Full Text PDF

We investigate theoretically the Čerenkov-type second-harmonic generation in two-dimensional bulk nonlinear photonic crystal with longitudinal modulation of the χ((2)) nonlinearity. We show that in this scheme the Čerenkov radiation can be achieved simultaneously at multiple directions with comparable intensities. The angles of emission are controllable by the spatial modulation of the nonlinearity.

View Article and Find Full Text PDF

In this Letter, we experimentally demonstrate the enhancement of the inhomogeneous second harmonic conversion in the opaque region of a GaAs cavity with efficiencies of the order of 0.1% at 612 nm, using 3 ps pump pulses having peak intensities of the order of 10 MW/cm(2). We show that the conversion efficiency of the inhomogeneous, phase-locked second harmonic component is a quadratic function of the cavity factor Q.

View Article and Find Full Text PDF

We study theoretically and numerically the second harmonic generation in a nonlinear crystal with random distribution of ferroelectric domains. We show that the specific features of disordered domain structure greatly affect the emission pattern of the generated harmonics. This phenomena can be used to characterize the degree of disorder in nonlinear photonic structures.

View Article and Find Full Text PDF

Quantification of exposure to traffic-related air pollutants near highways is hampered by incomplete knowledge of the scales of temporal variation of pollutant gradients. The goal of this study was to characterize short-term temporal variation of vehicular pollutant gradients within 200-400 m of a major highway (>150 000 vehicles/d). Monitoring was done near Interstate 93 in Somerville (Massachusetts) from 06:00 to 11:00 on 16 January 2008 using a mobile monitoring platform equipped with instruments that measured ultrafine and fine particles (6-1000 nm, particle number concentration (PNC)); particle-phase (>30 nm) [Formula: see text], [Formula: see text], and organic compounds; volatile organic compounds (VOCs); and CO(2), NO, NO(2), and O(3).

View Article and Find Full Text PDF

We study parametric frequency conversion in quadratic nonlinear media with disordered ferroelectric domains. We demonstrate that disorder allows realizing broadband third-harmonic generation via cascading of two second-order quasi-phase matched nonlinear processes. We analyze both spatial and polarization properties of the emitted radiation and find the results in agreement with our theoretical predictions.

View Article and Find Full Text PDF