Publications by authors named "Trueblood C"

Article Synopsis
  • Adeno-associated virus (AAV) gene therapy is increasingly recognized for its ability to target the central nervous system (CNS), particularly in treating neurological diseases.
  • Recent research focused on a new AAV gene therapy aimed at reducing amyloid aggregation in the brain by using a modified Aβ sequence variant to inhibit fibril formation.
  • The study showed that adjusting DNA plasmid elements—like signal peptides and incorporating a fusion tag—greatly enhanced the release and tracking of therapeutic peptides, ultimately improving peptide production by 10-fold in experimental models.
View Article and Find Full Text PDF

High-level spinal cord injury (SCI) often results in cardiovascular dysfunction, especially the development of autonomic dysreflexia. This disorder, characterized as an episode of hypertension accompanied by bradycardia in response to visceral or somatic stimuli, causes substantial discomfort and potentially life-threatening symptoms. The neural mechanisms underlying this dysautonomia include a loss of supraspinal control to spinal sympathetic neurons, maladaptive plasticity of sensory inputs and propriospinal interneurons, and excessive discharge of sympathetic preganglionic neurons.

View Article and Find Full Text PDF

Traumatic spinal cord injury (SCI) often causes micturition dysfunction. We recently discovered a low level of spinally-derived dopamine (DA) that regulates recovered bladder and sphincter reflexes in SCI female rats. Considering substantial sexual dimorphic features in the lower urinary tract, it is unknown if the DA-ergic mechanisms act in the male.

View Article and Find Full Text PDF
Article Synopsis
  • Cardiovascular dysfunction often follows high-level spinal cord injuries due to disrupted brain pathways that regulate blood flow, leading to a condition called autonomic dysreflexia (AD).
  • Researchers implanted serotonergic neuron-enriched stem cells into spinal cord injury sites in rats to investigate if restoring serotonin pathways could improve cardiovascular performance.
  • Results showed that the grafted neurons integrated with host tissue, restored normal blood pressure, and alleviated symptoms of AD, suggesting that these stem cells can help reconnect brain control over autonomic functions after spinal cord injury.
View Article and Find Full Text PDF

Selection of a proper spinal cord injury (SCI) rat model to study therapeutic effects of cell transplantation is imperative for research in cardiovascular functional recovery, due to the local harsh milieu inhibiting cell growth. We recently found that a crushed spinal cord lesion can minimize fibrotic scarring and grafted cell death compared with open-dura injuries. To determine if this SCI model is applicable for studying cardiovascular recovery, we examined hemodynamic consequences following crushed SCI and tested cardiovascular responses to serotonin (5-HT) or dopamine (DA) receptor agonists.

View Article and Find Full Text PDF

Many proteins that contain a carboxyl-terminal CaaX sequence motif, including Ras and yeast a-factor, undergo a series of sequential posttranslational processing steps. Following the initial prenylation of the cysteine, the three C-terminal amino acids are proteolytically removed, and the newly formed prenylcysteine is carboxymethylated. The specific amino acids that comprise the CaaX sequence influence whether the protein can be prenylated and proteolyzed.

View Article and Find Full Text PDF

Protein prenyltransferases catalyze the covalent attachment of isoprenoid lipids (farnesyl or geranylgeranyl) to a cysteine near the C terminus of their substrates. This study explored the specificity determinants for interactions between the farnesyltransferase of Saccharomyces cerevisiae and its protein substrates. A series of substitutions at amino acid 149 of the farnesyltransferase beta-subunit were tested in combination with a series of substitutions at the C-terminal amino acid of CaaX protein substrates Ras2p and a-factor.

View Article and Find Full Text PDF

Farnesyltransferase (FTase) is a heterodimeric enzyme that modifies a group of proteins, including Ras, in mammals and yeasts. Plant FTase alpha and beta subunits were cloned from tomato and expressed in the yeast Saccharomyces cerevisiae to assess their functional conservation in farnesylating Ras and a-factor proteins, which are important for cell growth and mating. The tomato FTase beta subunit (LeFTB) alone was unable to complement the growth defect of ram1 delta mutant yeast strains in which the chromosomal FTase beta subunit gene was deleted, but coexpression of LeFTB with the plant alpha subunit gene (LeFTA) restored normal growth, Ras membrane association, and mating.

View Article and Find Full Text PDF

Two protein prenyltransferase enzymes, farnesyltransferase (FTase) and geranylgeranyltransferase-I (GGTase-I), catalyze the covalent attachment of a farnesyl or geranylgeranyl lipid group to the cysteine of a CaaX sequence (cysteine [C], two aliphatic amino acids [aa], and any amino acid [X]. In vitro studies reported here confirm previous reports that CaaX proteins with a C-terminal serine are farnesylated by FTase and those with a C-terminal leucine are geranylgeranylated by GGTase-I. In addition, we found that FTase can farnesylate CaaX proteins with a C-terminal leucine and can transfer a geranylgeranyl group to some CaaX proteins.

View Article and Find Full Text PDF

The post-translational processing of the yeast a-mating pheromone precursor, Ras proteins, nuclear lamins, and some subunits of trimeric G proteins requires a set of complex modifications at their carboxyl termini. This processing includes three steps: prenylation of a cysteine residue, proteolytic processing, and carboxymethylation. In the yeast Saccharomyces cerevisiae, the product of the DPR1-RAM1 gene participates in this type of processing.

View Article and Find Full Text PDF

In Saccharomyces cerevisiae, the COX5a and COX5b genes constitute a small gene family that encodes two forms of cytochrome c oxidase subunit V, Va and Vb, either of which can provide a function essential for cytochrome c oxidase activity and respiration. In aerobically grown wild-type yeast cells, Va is the predominant form of subunit V. The COX5b gene alone does not produce enough Vb to support a respiration rate sufficient to allow growth on nonfermentable carbon sources.

View Article and Find Full Text PDF

In Saccharomyces cerevisiae, the COX5a and COX5b genes encode two forms of cytochrome c oxidase subunit V, Va and Vb. We report here that heme increases COX5a expression and decreases COX5b expression and that the HAP2 and REO1 genes are involved in positive regulation of COX5a and negative regulation of COX5b, respectively. Heme regulation of COX5a and COX5b may dictate which subunit V isoform is available for assembly into cytochrome c oxidase under conditions of high- and low-oxygen tension.

View Article and Find Full Text PDF

In order to facilitate studies on protein localization to and sorting within yeast mitochondria, we have designed an experimental system that utilizes a new vector and a functional assay. The vector, which we call an LPS plasmid (for leader peptide substitution), employs a yeast COX5a gene (the structural gene for subunit Va of the inner membrane protein complex cytochrome c oxidase) as a convenient reporter for correct mitochondrial localization. Using in vitro mutagenesis, we have modified COX5a so that the DNA sequences encoding the wild-type subunit Va leader peptide can be precisely deleted and replaced with a given test sequence.

View Article and Find Full Text PDF

In Saccharomyces cerevisiae, COX5a and COX5b encode two distinct forms of cytochrome c oxidase subunit V, Va and Vb, respectively. To determine the relative contribution of COX5a and COX5b to cytochrome c oxidase function, we have disrupted each gene. Cytochrome c oxidase activity levels and respiration rates of strains carrying null alleles of COX5a or COX5b or both indicate that some form of subunit V is required for cytochrome c oxidase function and that COX5a is much more effective than COX5b in providing this function.

View Article and Find Full Text PDF

In Saccharomyces cerevisiae, subunit V of the inner mitochondrial membrane protein complex cytochrome c oxidase is encoded by two nonidentical genes, COX5a and COX5b. Both genes are present as single copies in S. cerevisiae and in several other Saccharomyces species.

View Article and Find Full Text PDF

Troponin-tropomyosin-regulated myofibrils show a significant increase in ATPase activity and contract in the absence of calcium when the ATP concentration falls significantly below the saturation level. By contrast, the ATPase of the myosin-regulated myofibrils of scallop striated muscle was not activated in the absence of calcium when the ATP concentration was lowered to 10mM. Nevertheless, a very small fraction of crossbridges were active at 10mM ATP resulting in very slow myofibrillar shortening.

View Article and Find Full Text PDF

In Saccharomyces cerevisiae, the inner mitochondrial membrane protein cytochrome c oxidase is composed of nine polypeptide subunits. Six of these subunits (IV, V, VI, VII, VIIa, VIII) are encoded by the nuclear genome, and the remaining three (I, II, III) are encoded by mitochondrial DNA. We report here the existence of two nonidentical subunit V polypeptides, which are encoded by separate genes within the yeast genome.

View Article and Find Full Text PDF

The co-operative response of regulated actomyosin ATPase to increasing concentrations of calcium has been attributed to nearest-neighbor interactions, presumably between troponin-tropomyosin complexes. The degree of co-operativity was not decreased after the carboxy-terminal 11 amino acid residues had been removed from tropomyosin by carboxypeptidase A. This indicates that the interactions between neighboring troponin-tropomyosin complexes do not occur through the overlapping tropomyosin ends.

View Article and Find Full Text PDF

The main purpose of this study was to determine whether potentiation of acto-S-1 ATPase activity (activity higher than that obtained with tropomyosin-free actin) could be caused by nucleotide-containing acto-S-1 complexes. In addition, we wanted to know whether these complexes also have a positive cooperative effect on their own apparent binding constant under conditions where nucleotide-free acto-S-1 complexes cause potentiation of ATPase activity. Using calcium-saturated troponin-tropomyosin actin filaments, we observed potentiation of ATPase activity in the presence of 5.

View Article and Find Full Text PDF