Publications by authors named "Trudeau L"

Monitoring neurochemicals and imaging the molecular content of brain tissues , , and is essential for enhancing our understanding of neurochemistry and the causes of brain disorders. This review explores the potential applications of surface-enhanced Raman scattering (SERS) nanosensors in neurosciences, where their adoption could lead to significant progress in the field. These applications encompass detecting neurotransmitters or brain disorders biomarkers in biofluids with SERS nanosensors, and imaging normal and pathological brain tissues with SERS labeling.

View Article and Find Full Text PDF

Genetically-encoded dopamine (DA) sensors enable high-resolution imaging of DA release, but their ability to detect a wide range of extracellular DA levels, especially tonic versus phasic DA release, is limited by their intrinsic affinity. Here we show that a human-selective dopamine receptor positive allosteric modulator (PAM) can be used to boost sensor affinity on-demand. The PAM enhances DA detection sensitivity across experimental preparations (in vitro, ex vivo and in vivo) via one-photon or two-photon imaging.

View Article and Find Full Text PDF
Article Synopsis
  • The enteric nervous system (ENS) contains a complex network of neurons, with a specific subset identified as dopaminergic, but their roles and impact on diseases are not fully understood.
  • This study utilizes a specialized mouse model expressing a fluorescent protein to characterize dopaminergic neurons in the gut, revealing distinct subtypes and their unique locations.
  • Findings suggest that these gut dopamine neurons may release additional neurotransmitters like acetylcholine and unveil a new population associated with specific markers, indicating the need for further research on their functions and potential disease implications.
View Article and Find Full Text PDF

In Parkinson's disease (PD), motor dysfunctions only become apparent after extensive loss of DA innervation. This resilience has been hypothesized to be due to the ability of many motor behaviors to be sustained through a diffuse basal tone of DA; but experimental evidence for this is limited. Here we show that conditional deletion of the calcium sensor synaptotagmin-1 (Syt1) in DA neurons (Syt1 cKO mice) abrogates most activity-dependent axonal DA release in the striatum and mesencephalon, leaving somatodendritic (STD) DA release intact.

View Article and Find Full Text PDF

Initiating drug use during adolescence increases the risk of developing addiction or other psychopathologies later in life, with long-term outcomes varying according to sex and exact timing of use. The cellular and molecular underpinnings explaining this differential sensitivity to detrimental drug effects remain unexplained. The Netrin-1/DCC guidance cue system segregates cortical and limbic dopamine pathways in adolescence.

View Article and Find Full Text PDF

Midbrain dopamine (DA) neurons are key regulators of basal ganglia functions. The axonal domain of these neurons is highly complex, with a large subset of non-synaptic release sites and a smaller subset of synaptic terminals from which in addition to DA, glutamate or GABA are also released. The molecular mechanisms regulating the connectivity of DA neurons and their neurochemical identity are unknown.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a chronic, neurodegenerative condition characterized by motor symptoms such as bradykinesia, rigidity, and tremor, alongside multiple nonmotor symptoms. The appearance of motor symptoms is linked to progressive dopaminergic neuron loss within the substantia nigra. PD incidence increases sharply with age, suggesting a strong association between mechanisms driving biological aging and the development and progression of PD.

View Article and Find Full Text PDF

Several populations of neurons are purported to degenerate in Parkinson's disease (PD). One current hypothesis suggests that vulnerable neurons in PD share common characteristics including projecting to voluminous territories and having extremely long and branched axonal domains with large numbers of neurotransmitter release sites. In this study, we used a mouse culture system to compare the axonal domain of neuronal populations suspected to be vulnerable in PD to that of neuronal populations considered at a lesser risk.

View Article and Find Full Text PDF

Atherosclerosis, the major cause of myocardial infarction and stroke, results from converging inflammatory, metabolic, and biomechanical factors. Arterial lesions form at sites of low and disturbed blood flow but are suppressed by high laminar shear stress (LSS) mainly via transcriptional induction of the anti-inflammatory transcription factor, Kruppel-like factor 2 (Klf2). We therefore performed a whole genome CRISPR-Cas9 screen to identify genes required for LSS induction of Klf2.

View Article and Find Full Text PDF

This study evaluated emerging adult effects of the PROmoting School-Community-University Partnerships to Enhance Resilience (PROSPER) universal prevention delivery system implemented in middle schools. Twenty-eight rural school districts were randomized to intervention and control conditions, with 1985 nineteen-year-old participants (90.6% White, 54.

View Article and Find Full Text PDF

Dopamine (DA) neurons can release DA not just from axon terminals, but also from their somatodendritic (STD) compartment through a mechanism that is still incompletely understood. Using voltammetry in mouse mesencephalic brain slices, we find that STD DA release has low capacity and shows a calcium sensitivity that is comparable to that of axonal release. We find that the molecular mechanism of STD DA release differs from axonal release with regard to the implication of synaptotagmin (Syt) calcium sensors.

View Article and Find Full Text PDF

Dendritic cells (DCs) excel at cross-presenting antigens, but their effectiveness as cancer vaccine is limited. Here, we describe a vaccination approach using mesenchymal stromal cells (MSCs) engineered to express the immunoproteasome complex (MSC-IPr). Such modification instills efficient antigen cross-presentation abilities associated with enhanced major histocompatibility complex class I and CD80 expression, production of interleukin-12, and higher chemokine secretion.

View Article and Find Full Text PDF
Article Synopsis
  • Dopamine neurons in the substantia nigra pars compacta (SNc) are particularly susceptible to degeneration in Parkinson's disease, potentially due to their extensive axonal structures leading to increased stress.
  • Research indicates that other dopamine neuron populations with smaller axons are generally more resistant to damage and loss.
  • The study demonstrates that inducing partial lesions in neonatal mice results in compensatory axonal sprouting, suggesting that altered SNc DA neuron models could better mimic the vulnerability seen in Parkinson's disease.
View Article and Find Full Text PDF

Chemical neurotransmission typically occurs through synapses. Previous ultrastructural examinations of monoamine neuron axon terminals often failed to identify a pre- and postsynaptic coupling, leading to the concept of "volume" transmission. Whether this results from intrinsic properties of these neurons remains undefined.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurodegenerative disorder that has been shown to be influenced by the intestinal milieu. The gut microbiota is altered in PD patients, and murine studies have begun suggesting a causative role for the gut microbiota in progression of PD. We have previously shown that repeated infection with the intestinal murine pathogen resulted in the development of PD-like pathology in mice compared to wild-type littermates.

View Article and Find Full Text PDF

Plasmonic nanostructures have found increasing utility due to the increased popularity that surface-enhanced Raman scattering (SERS) has achieved in recent years. SERS has been incorporated into an ever-growing list of applications, with bioanalytical and physiological analyses having emerged as two of the most popular. Thus far, the transition from SERS studies of cultured cells to SERS studies involving tissue has been gradual and limited.

View Article and Find Full Text PDF

A subset of adult ventral tegmental area dopamine (DA) neurons expresses vesicular glutamate transporter 2 (VGluT2) and releases glutamate as a second neurotransmitter in the striatum, while only few adult substantia nigra DA neurons have this capacity. Recent work showed that cellular stress created by neurotoxins such as MPTP and 6-hydroxydopamine can upregulate VGluT2 in surviving DA neurons, suggesting the possibility of a role in cell survival, although a high level of overexpression could be toxic to DA neurons. Here we examined the level of VGluT2 upregulation in response to neurotoxins and its impact on postlesional plasticity.

View Article and Find Full Text PDF

D-amphetamine maintenance therapy shows promise as a treatment for people with cocaine addiction. Preclinical studies using Long Access (LgA) cocaine self-administration procedures suggest D-amphetamine may act by preventing tolerance to cocaine's effects at the dopamine transporter (DAT). However, Intermittent Access (IntA) cocaine self-administration better reflects human patterns of use, is especially effective in promoting addiction-relevant behaviors, and instead of tolerance, produces psychomotor, incentive, and neural sensitization.

View Article and Find Full Text PDF

Hypertension Canada's 2020 guidelines for the prevention, diagnosis, risk assessment, and treatment of hypertension in adults and children provide comprehensive, evidence-based guidance for health care professionals and patients. Hypertension Canada develops the guidelines using rigourous methodology, carefully mitigating the risk of bias in our process. All draft recommendations undergo critical review by expert methodologists without conflict to ensure quality.

View Article and Find Full Text PDF

Mitochondria play a crucial role in neuronal survival through efficient energy metabolism. In pathological conditions, mitochondrial stress leads to neuronal death, which is regulated by the anti-apoptotic BCL-2 family of proteins. MCL-1 is an anti-apoptotic BCL-2 protein localized to mitochondria either in the outer membrane (OM) or inner membrane (Matrix), which have distinct roles in inhibiting apoptosis and promoting bioenergetics, respectively.

View Article and Find Full Text PDF

This study examines crossover effects of adolescent substance misuse preventive interventions on academic success in college. It evaluates pathways of influence on college grades, via effects on school engagement, problem-solving skills, and substance misuse in high school. Data were collected as part of an Randomized Controlled Trial (RCT) evaluating a multicomponent intervention conducted in 28 school districts with middle school students.

View Article and Find Full Text PDF