Publications by authors named "Troy Thornberry"

Deep convection in the Asian summer monsoon is a significant transport process for lifting pollutants from the planetary boundary layer to the tropopause level. This process enables efficient injection into the stratosphere of reactive species such as chlorinated very-short-lived substances (Cl-VSLSs) that deplete ozone. Past studies of convective transport associated with the Asian summer monsoon have focused mostly on the south Asian summer monsoon.

View Article and Find Full Text PDF

We introduce a climate intervention strategy focused on decreasing water vapor (WV) concentrations near the tropopause and in the stratosphere to increase outbound longwave radiation. The mechanism is the targeted injection of ice-nucleating particles (INP) in air supersaturated with respect to ice at high altitudes in the tropical entryway to the stratosphere. Ice formation in this region is a critical control of stratospheric WV.

View Article and Find Full Text PDF

The Hunga Tonga-Hunga Ha'apai (HT-HH) volcanic eruptions on January 13 and 15, 2022, produced a plume with the highest signal in stratospheric aerosol optical depth observed since the eruption of Mt. Pinatubo in 1991. Suites of balloon-borne instruments on a series of launches from Réunion Island intercepted the HT-HH plume between 7 and 10 d of the eruptions, yielding observations of the aerosol number and size distribution and sulfur dioxide (SO) and water vapor (HO) concentrations.

View Article and Find Full Text PDF
Article Synopsis
  • The Hunga Tonga-Hunga Ha'apai volcano erupted on January 15, 2022, providing a unique chance to study how tropical volcanic eruptions affect the stratosphere.
  • Observations from balloons near Réunion Island indicated a significant injection of water vapor which led to increased humidity, causing rapid ozone depletion of 5% within a week.
  • The study also showed changes in chlorine compounds in the volcanic plume, enhancing our understanding of volcanic impacts on stratospheric chemistry and potential climate change effects.
View Article and Find Full Text PDF

Small uncrewed aerial systems (sUASs) have the potential to serve as ideal platforms for high spatial and temporal resolution wildfire measurements to complement aircraft and satellite observations, but typically have very limited payload capacity. Recognizing the need for improved data from wildfire management and smoke forecasting communities and the potential advantages of sUAS platforms, the Nighttime Fire Observations eXperiment (NightFOX) project was funded by the US National Oceanic and Atmospheric Administration (NOAA) to develop a suite of miniaturized, relatively low-cost scientific instruments for wildfire-related measurements that would satisfy the size, weight and power constraints of a sUAS payload. Here we report on a remote sensing system developed under the NightFOX project that consists of three optical instruments with five individual sensors for wildfire mapping and fire radiative power measurement and a GPS-aided inertial navigation system module for aircraft position and attitude determination.

View Article and Find Full Text PDF

In 2017, western Canadian wildfires injected smoke into the stratosphere that was detectable by satellites for more than 8 months. The smoke plume rose from 12 to 23 kilometers within 2 months owing to solar heating of black carbon, extending the lifetime and latitudinal spread. Comparisons of model simulations to the rate of observed lofting indicate that 2% of the smoke mass was black carbon.

View Article and Find Full Text PDF

Pervasive cirrus clouds in the tropical tropopause layer (TTL) play an important role in determining the composition of stratospheric air through dehydration of tropospheric air entering the stratosphere. This dehydration affects Earth's energy budget and climate, yet uncertainties remain regarding the microphysical processes that govern TTL cirrus. TTL cirrus were sampled with the NASA Global Hawk UAV for over 30 hr in the Western Pacific in 2014 during the Airborne Tropical TRopopause EXperiment.

View Article and Find Full Text PDF

An enhanced aerosol layer near the tropopause over Asia during the June-September period of the Asian summer monsoon (ASM) was recently identified using satellite observations. Its sources and climate impact are presently not well-characterized. To improve understanding of this phenomenon, we made in situ aerosol measurements during summer 2015 from Kunming, China, then followed with a modeling study to assess the global significance.

View Article and Find Full Text PDF

The vertical distribution of relative humidity with respect to ice (RHI) in the Boreal wintertime Tropical Tropopause Layer (TTL, ≃14-18 km) over the Pacific is examined with the extensive dataset of measurements from the NASA Airborne Tropical TRopopause EXperiment (ATTREX). Multiple deployments of the Global Hawk during ATTREX provided hundreds of vertical profiles spanning the longitudinal extent of the Pacific with accurate measurements of temperature, pressure, water vapor concentration, ozone concentration, and cloud properties. We also compare the measured RHI distributions with results from a transport and microphysical model driven by meteorological analysis fields.

View Article and Find Full Text PDF

A laboratory chilled mirror hygrometer (CMH), exposed to an airstream containing water vapor (H2O) and nitric acid (HNO3), has been used to demonstrate the existence of a persistent water-nitric acid condensate that has a saturation H2O vapor pressure greater than that of hexagonal ice (Ih). The condensate was routinely formed on the mirror by removing HNO3 from the airstream following the formation of an initial condensate on the mirror that resembled nitric acid trihydrate (NAT). Typical conditions for the formation of the persistent condensate were a H2O mixing ratio greater than 18 ppm, pressure of 128 hPa, and mirror temperature between 202 and 216 K.

View Article and Find Full Text PDF

The adsorption of gas-phase nitric acid onto water-ice surfaces at temperatures between 200 and 239 K has been studied over short time scales using a coated-wall flow tube coupled to a chemical ionization mass spectrometer. The nitric acid partial pressures used were between 10(-8) hPa and 10(-6) hPa, making this the first systematic study under partial pressure conditions present in the upper troposphere. Whereas previous findings using this technique have shown that the surface coverages are saturated at 2 to 3 x 10(14) molecules cm(-2) (referenced to the geometric surface area of the ice film) when partial pressures are larger than about 10(-7) hPa, the principal finding from this study is that the surface coverages are in the unsaturated regime at lower partial pressures.

View Article and Find Full Text PDF

Forest emissions of biogenic volatile organic compounds (BVOCs), such as isoprene and other terpenes, play a role in the production of tropospheric ozone and aerosols. In a northern Michigan forest, the direct measurement of total OH reactivity, which is the inverse of the OH lifetime, was significantly greater than expected. The difference between measured and expected OH reactivity, called the missing OH reactivity, increased with temperature, as did emission rates for terpenes and other BVOCs.

View Article and Find Full Text PDF