Publications by authors named "Troy Ruths"

Background: Forward-time population genetic simulations play a central role in deriving and testing evolutionary hypotheses. Such simulations may be data-intensive, depending on the settings to the various parameters controlling them. In particular, for certain settings, the data footprint may quickly exceed the memory of a single compute node.

View Article and Find Full Text PDF

Cis-regulatory networks (CRNs) play a central role in cellular decision making. Like every other biological system, CRNs undergo evolution, which shapes their properties by a combination of adaptive and nonadaptive evolutionary forces. Teasing apart these forces is an important step toward functional analyses of the different components of CRNs, designing regulatory perturbation experiments, and constructing synthetic networks.

View Article and Find Full Text PDF

Gene regulation in bacteria is usually described as an adaptive response to an environmental change so that genes are expressed when they are required. We instead propose that most genes are under indirect control: their expression responds to signal(s) that are not directly related to the genes' function. Indirect control should perform poorly in artificial conditions, and we show that gene regulation is often maladaptive in the laboratory.

View Article and Find Full Text PDF

Background: The amount of transcription factor binding sites (TFBS) in an organism's genome positively correlates with the complexity of the regulatory network of the organism. However, the manner by which TFBS arise and accumulate in genomes and the effects of regulatory network complexity on the organism's fitness are far from being known. The availability of TFBS data from many organisms provides an opportunity to explore these issues, particularly from an evolutionary perspective.

View Article and Find Full Text PDF

Electron cryo-microscopy (cryo-EM) has played an increasingly important role in elucidating the structure and function of macromolecular assemblies in near native solution conditions. Typically, however, only non-atomic resolution reconstructions have been obtained for these large complexes, necessitating computational tools for integrating and extracting structural details. With recent advances in cryo-EM, maps at near-atomic resolutions have been achieved for several macromolecular assemblies from which models have been manually constructed.

View Article and Find Full Text PDF

Motivation: The growing availability of genome-scale datasets has attracted increasing attention to the development of computational methods for automated inference of functional similarities among genes and their products. One class of such methods measures the functional similarity of genes based on their distance in the Gene Ontology (GO). To measure the functional relatedness of a gene set, these measures consider every pair of genes in the set, and the average of all pairwise distances is calculated.

View Article and Find Full Text PDF