Publications by authors named "Troy P Hubbard"

Adherent-invasive Escherichia coli (AIEC) are pathogenic bacteria frequently isolated from patients who have Crohn's disease (CD). Despite the phenotypic differences between AIEC and commensal E. coli, comparative genomic approaches have been unable to differentiate these two groups, making the identification of key virulence factors a challenge.

View Article and Find Full Text PDF

Enterohemorrhagic Escherichia coli O157:H7 (EHEC) is an important food-borne pathogen that colonizes the colon. Transposon-insertion sequencing (TIS) was used to identify genes required for EHEC and E. coli K-12 growth in vitro and for EHEC growth in vivo in the infant rabbit colon.

View Article and Find Full Text PDF

Transposon insertion sequencing (TIS) is a widely used technique for conducting genome-scale forward genetic screens in bacteria. However, few methods enable comparison of TIS data across multiple replicates of a screen or across independent screens, including screens performed in different organisms. Here, we introduce a analytic framework, comparative TIS (CompTIS), which utilizes unsupervised learning to enable meta-analysis of multiple TIS data sets.

View Article and Find Full Text PDF

Outbreaks of cholera, a rapidly fatal diarrheal disease, often spread explosively. The efficacy of reactive vaccination campaigns-deploying vaccines during epidemics-is partially limited by the time required for vaccine recipients to develop adaptive immunity. We created HaitiV, a live attenuated cholera vaccine candidate, by deleting diarrheagenic factors from a recent clinical isolate of and incorporating safeguards against vaccine reversion.

View Article and Find Full Text PDF

Transposon insertion sequencing (TIS) is a powerful high-throughput genetic technique that is transforming functional genomics in prokaryotes, because it enables genome-wide mapping of the determinants of fitness. However, current approaches for analyzing TIS data assume that selective pressures are constant over time and thus do not yield information regarding changes in the genetic requirements for growth in dynamic environments (e.g.

View Article and Find Full Text PDF

Unlabelled: Transposon insertion sequencing (TIS; also known as TnSeq) is a potent approach commonly used to comprehensively define the genetic loci that contribute to bacterial fitness in diverse environments. A key presumption underlying analyses of TIS datasets is that loci with a low frequency of transposon insertions contribute to fitness. However, it is not known whether factors such as nucleoid binding proteins can alter the frequency of transposon insertion and thus whether TIS output may systematically reflect factors that are independent of the role of the loci in fitness.

View Article and Find Full Text PDF

Type III secretion systems (T3SSs) inject bacterial effector proteins into host cells and underlie the virulence of many gram-negative pathogens. Studies have illuminated bacterial factors required for T3SS function, but the required host processes remain largely undefined. We coupled CRISPR/Cas9 genome editing technology with the cytotoxicity of two Vibrio parahaemolyticus T3SSs (T3SS1 and T3SS2) to identify human genome disruptions conferring resistance to T3SS-dependent cytotoxicity.

View Article and Find Full Text PDF

Vibrio parahaemolyticus is the most common cause of seafood-borne gastroenteritis worldwide and a blight on global aquaculture. This organism requires a horizontally acquired type III secretion system (T3SS2) to infect the small intestine, but knowledge of additional factors that underlie V. parahaemolyticus pathogenicity is limited.

View Article and Find Full Text PDF