Publications by authors named "Troy Margrie"

Cortical computations arise from patterns of neuronal activity that span across all cortical layers and cell types. Three-photon excitation has extended the depth limit of imaging within the mouse brain to encompass all cortical layers. However, simultaneous three-photon imaging throughout cortical layers has yet to be demonstrated.

View Article and Find Full Text PDF

Exogenous opsins allow for interrogation of brain circuits at unprecedented temporal and spatial precision. Here, we found that optical fiber laser stimulation at wavelengths of 637, 594, or 473 nm within the cortex of mice lacking expression of exogenous opsins resulted in a strong neuronal response in the contralateral visual cortex. Evoked responses were observed even at low laser intensities (fiber tip power 1 mW) and most pronounced at 637 nm.

View Article and Find Full Text PDF

Escape behavior is a set of locomotor actions that move an animal away from threat. While these actions can be stereotyped, it is advantageous for survival that they are flexible. For example, escape probability depends on predation risk and competing motivations, and flight to safety requires continuous adjustments of trajectory and must terminate at the appropriate place and time.

View Article and Find Full Text PDF

Tactile sensation and vision are often both utilized for the exploration of objects that are within reach though it is not known whether or how these two distinct sensory systems combine such information. Here in mice, we used a combination of stereo photogrammetry for 3D reconstruction of the whisker array, brain-wide anatomical tracing and functional connectivity analysis to explore the possibility of tacto-visual convergence in sensory space and within the circuitry of the primary visual cortex (VISp). Strikingly, we find that stimulation of the contralateral whisker array suppresses visually evoked activity in a tacto-visual sub-region of VISp whose visual space representation closely overlaps with the whisker search space.

View Article and Find Full Text PDF

Despite increasing evidence of its involvement in several key functions of the cerebral cortex, the vestibular sense rarely enters our consciousness. Indeed, the extent to which these internal signals are incorporated within cortical sensory representation and how they might be relied upon for sensory-driven decision-making, during, for example, spatial navigation, is yet to be understood. Recent novel experimental approaches in rodents have probed both the physiological and behavioral significance of vestibular signals and indicate that their widespread integration with vision improves both the cortical representation and perceptual accuracy of self-motion and orientation.

View Article and Find Full Text PDF

When faced with predatory threats, escape towards shelter is an adaptive action that offers long-term protection against the attacker. Animals rely on knowledge of safe locations in the environment to instinctively execute rapid shelter-directed escape actions. Although previous work has identified neural mechanisms of escape initiation, it is not known how the escape circuit incorporates spatial information to execute rapid flights along the most efficient route to shelter.

View Article and Find Full Text PDF

Decoding the complexity of the brain requires an understanding of the architecture, function, and development of its neuronal circuits. Neuronal classifications that group neurons based on specific features/behaviors have become essential to further analyze the different subtypes in a systematic and reproducible way. A comprehensive taxonomic framework, accounting for multiple defining and quantitative features, will provide the reference to infer generalized rules for cells ascribed to the same neuronal type, and eventually predict cellular behaviors, even in the absence of experimental measures.

View Article and Find Full Text PDF

In many instances, external sensory-evoked neuronal activity is used by the brain to select the most appropriate behavioral response. Predator-avoidance behaviors such as freezing and escape are of particular interest since these stimulus-evoked responses are behavioral manifestations of a decision-making process that is fundamental to survival. Over the lifespan of an individual, however, the threat value of agents in the environment is believed to undergo constant revision, and in some cases, repeated avoidance of certain stimuli may no longer be an optimal behavioral strategy.

View Article and Find Full Text PDF

Understanding the function of biological tissues requires a coordinated study of physiology and structure, exploring volumes that contain complete functional units at a detail that resolves the relevant features. Here, we introduce an approach to address this challenge: Mouse brain tissue sections containing a region where function was recorded using in vivo 2-photon calcium imaging were stained, dehydrated, resin-embedded and imaged with synchrotron X-ray computed tomography with propagation-based phase contrast (SXRT). SXRT provided context at subcellular detail, and could be followed by targeted acquisition of multiple volumes using serial block-face electron microscopy (SBEM).

View Article and Find Full Text PDF

High-resolution whole-brain microscopy provides a means for post hoc determination of the location of implanted devices and labelled cell populations that are necessary to interpret in vivo experiments designed to understand brain function. Here we have developed two plugins (brainreg and brainreg-segment) for the Python-based image viewer napari, to accurately map any object in a common coordinate space. We analysed the position of dye-labelled electrode tracks and two-photon imaged cell populations expressing fluorescent proteins.

View Article and Find Full Text PDF

To successfully navigate the environment, animals depend on their ability to continuously track their heading direction and speed. Neurons that encode angular head velocity (AHV) are fundamental to this process, yet the contribution of various motion signals to AHV coding in the cortex remains elusive. By performing chronic single-unit recordings in the retrosplenial cortex (RSP) of the mouse and tracking the activity of individual AHV cells between freely moving and head-restrained conditions, we find that vestibular inputs dominate AHV signaling.

View Article and Find Full Text PDF

Over the last ten years, developments in whole-brain microscopy now allow for high-resolution imaging of intact brains of small animals such as mice. These complex images contain a wealth of information, but many neuroscience laboratories do not have all of the computational knowledge and tools needed to process these data. We review recent open source tools for registration of images to atlases, and the segmentation, visualisation and analysis of brain regions and labelled structures such as neurons.

View Article and Find Full Text PDF

Understanding the function of the nervous system necessitates mapping the spatial distributions of its constituent cells defined by function, anatomy or gene expression. Recently, developments in tissue preparation and microscopy allow cellular populations to be imaged throughout the entire rodent brain. However, mapping these neurons manually is prone to bias and is often impractically time consuming.

View Article and Find Full Text PDF

Three-dimensional (3D) digital brain atlases and high-throughput brain-wide imaging techniques generate large multidimensional datasets that can be registered to a common reference frame. Generating insights from such datasets depends critically on visualization and interactive data exploration, but this a challenging task. Currently available software is dedicated to single atlases, model species or data types, and generating 3D renderings that merge anatomically registered data from diverse sources requires extensive development and programming skills.

View Article and Find Full Text PDF

Quantitatively comparing brain-wide connectivity of different types of neuron is of vital importance in understanding the function of the mammalian cortex. Here we have designed an analytical approach to examine and compare datasets from hierarchical segmentation ontologies, and applied it to long-range presynaptic connectivity onto excitatory and inhibitory neurons, mainly located in layer 2/3 (L2/3), of mouse primary visual cortex (V1). We find that the origins of long-range connections onto these two general cell classes-as well as their proportions-are quite similar, in contrast to the inputs on to a cell type in L6.

View Article and Find Full Text PDF

The cerebral cortex contains cells which respond to movement of the head, and these cells are thought to be involved in the perception of self-motion. In particular, studies in the primary visual cortex of mice show that both running speed and passive whole-body rotation modulates neuronal activity, and modern genetically targeted viral tracing approaches have begun to identify previously unknown circuits that underlie these responses. Here we review recent experimental findings and provide a road map for future work in mice to elucidate the functional architecture and emergent properties of a cortical network potentially involved in the generation of egocentric-based visual representations for navigation.

View Article and Find Full Text PDF

This in vivo study shows that both intrinsic and sensory-evoked synaptic properties of layer 2/3 neurons in mouse visual cortex are modified by ongoing visual input. Following visual deprivation, intrinsic properties are significantly altered, although orientation selectivity across the population remains unchanged. We, therefore, suggest that cortical cells adjust their intrinsic excitability in an activity-dependent manner to compensate for changes in synaptic drive and maintain sensory network function.

View Article and Find Full Text PDF

Juxtaglomerular cells (JGCs) of the olfactory bulb (OB) glomerular layer (GL) play a fundamental role in olfactory information processing. Their variability in morphology, physiology, and connectivity suggests distinct functions. The quantitative understanding of population-wise morphological and physiological properties and a comprehensive classification based on quantitative parameters, however, is still lacking, impeding the analysis of microcircuits.

View Article and Find Full Text PDF

To interpret visual-motion events, the underlying computation must involve internal reference to the motion status of the observer's head. We show here that layer 6 (L6) principal neurons in mouse primary visual cortex (V1) receive a diffuse, vestibular-mediated synaptic input that signals the angular velocity of horizontal rotation. Behavioral and theoretical experiments indicate that these inputs, distributed over a network of 100 L6 neurons, provide both a reliable estimate and, therefore, physiological separation of head-velocity signals.

View Article and Find Full Text PDF

The validation of automated image registration and segmentation is crucial for accurate and reliable mapping of brain connectivity and function in three-dimensional (3D) data sets. While validation standards are necessarily high and routinely met in the clinical arena, they have to date been lacking for high-resolution microscopy data sets obtained from the rodent brain. Here we present a tool for optimized automated mouse atlas propagation (aMAP) based on clinical registration software (NiftyReg) for anatomical segmentation of high-resolution 3D fluorescence images of the adult mouse brain.

View Article and Find Full Text PDF

Much of our understanding of the neuronal mechanisms of spatial navigation is derived from chronic recordings in rodents in which head-direction, place, and grid cells have all been described. However, despite the proposed importance of self-reference information to these internal representations of space, their congruence with vestibular signaling remains unclear. Here we have undertaken brain-wide functional mapping using both fMRI and electrophysiological methods to directly determine the spatial extent, strength, and time course of vestibular signaling across the rat forebrain.

View Article and Find Full Text PDF

The ability of the brain to rapidly process information from multiple pathways is critical for reliable execution of complex sensory-motor behaviors, yet the cellular mechanisms underlying a neuronal representation of multimodal stimuli are poorly understood. Here we explored the possibility that the physiological diversity of mossy fiber (MF) to granule cell (GC) synapses in the mouse vestibulocerebellum may contribute to the processing of coincident multisensory information at the level of individual GCs. We found that the strength and short-term dynamics of individual MF-GC synapses can act as biophysical signatures for primary vestibular, secondary vestibular and visual input pathways.

View Article and Find Full Text PDF

Sensory computations performed in the neocortex involve layer six (L6) cortico-cortical (CC) and cortico-thalamic (CT) signaling pathways. Developing an understanding of the physiological role of these circuits requires dissection of the functional specificity and connectivity of the underlying individual projection neurons. By combining whole-cell recording from identified L6 principal cells in the mouse primary visual cortex (V1) with modified rabies virus-based input mapping, we have determined the sensory response properties and upstream monosynaptic connectivity of cells mediating the CC or CT pathway.

View Article and Find Full Text PDF

Neurons integrate synaptic inputs across time and space, a process that determines the transformation of input signals into action potential output. This article explores how synaptic integration contributes to the richness of sensory signalling in the cerebellar and cerebral cortices. Whether a neuron receives a few or a few thousand discrete inputs, most evoked synaptic activity generates only subthreshold membrane potential fluctuations.

View Article and Find Full Text PDF