The success of adoptive T cell gene transfer for treatment of cancer and HIV is predicated on generating a response that is both durable and safe. We report long-term results from three clinical trials to evaluate gammaretroviral vector-engineered T cells for HIV. The vector encoded a chimeric antigen receptor (CAR) composed of CD4 linked to the CD3ζ signaling chain (CD4ζ).
View Article and Find Full Text PDFLentiviruses such as HIV-1 traverse nuclear pore complexes (NPC) and infect terminally differentiated non-dividing cells, but how they do this is unclear. The cytoplasmic NPC protein Nup358/RanBP2 was identified as an HIV-1 co-factor in previous studies. Here we report that HIV-1 capsid (CA) binds directly to the cyclophilin domain of Nup358/RanBP2.
View Article and Find Full Text PDFGenome-wide siRNA screens have identified host cell factors important for efficient HIV infection, among which are nuclear pore proteins such as RanBP2/Nup358 and the karyopherin Transportin-3/TNPO3. Analysis of the roles of these proteins in the HIV replication cycle suggested that correct trafficking through the pore may facilitate the subsequent integration step. Here we present data for coupling between these steps by demonstrating that depletion of Transportin-3 or RanBP2 altered the terminal step in early HIV replication, the selection of chromosomal sites for integration.
View Article and Find Full Text PDFMany retrotransposons and retroviruses display integration site specificity. Increasingly, this specificity is found to result from recognition by the retroelement of specific chromatin states or DNA-bound protein complexes. A well-studied example of such a targeted retroelement is the Saccharomyces Ty5 retrotransposon, which integrates into heterochromatin at the telomeres and silent mating loci.
View Article and Find Full Text PDFMobile elements rely on cellular processes to replicate, and therefore, mobile element proteins frequently interact with a variety of cellular factors. The integrase (IN) encoded by the retrotransposon Ty5 interacts with the heterochromatin protein Sir4, and this interaction determines Ty5's preference to integrate into heterochromatin. We explored the hypothesis that Ty5's targeting mechanism arose by mimicking an interaction between Sir4 and another cellular protein(s).
View Article and Find Full Text PDFThe yeast Ty5 retrotransposon preferentially integrates into heterochromatin at the telomeres and silent mating loci. Target specificity is mediated by a small domain of Ty5 integrase (the targeting domain, TD), which interacts with the heterochromatin protein Sir4 and tethers the integration complex to target sites. Here we demonstrate that TD is phosphorylated and that phosphorylation is required for interaction with Sir4.
View Article and Find Full Text PDF