Publications by authors named "Troy Hendrickson"

Background: The increasing prevalence of atrial fibrillation (AF) and chronic kidney diseases highlights the need for a deeper comprehension of the molecular mechanisms linking them. Mutations in PKD1, the gene encoding Polycystin-1 (PKD1 or PC1), account for 85% of autosomal dominant polycystic kidney disease (ADPKD) cases. This disease often includes cardiac complications such as AF.

View Article and Find Full Text PDF

Myocardial infarction remains the leading cause of death in the western world. Since the heart has limited regenerative capabilities, several cardiac tissue engineering (CTE) strategies have been proposed to repair the damaged myocardium. A novel electrospun construct with aligned and electroconductive fibers combining gelatin, poly(lactic-co-glycolic) acid and polypyrrole that may serve as a cardiac patch is presented.

View Article and Find Full Text PDF

Atrial fibrillation induced stroke accounts for up to 15% of all strokes. These strokes are caused approximately 90% of the time by clot formation in the left atrial appendage (LAA). To prevent these clots, the most common approach is to administer blood thinners.

View Article and Find Full Text PDF

Polycystin-1 (PC1) is a transmembrane protein found in different cell types, including cardiomyocytes. Alterations in PC1 expression have been linked to mitochondrial damage in renal tubule cells and in patients with autosomal dominant polycystic kidney disease. However, to date, the regulatory role of PC1 in cardiomyocyte mitochondria is not well understood.

View Article and Find Full Text PDF

Cardiovascular diseases are the number one killer in the world. Currently, there are no clinical treatments to regenerate damaged cardiac tissue, leaving patients to develop further life-threatening cardiac complications. Cardiac tissue has multiple functional demands including vascularization, contraction, and conduction that require many synergic components to properly work.

View Article and Find Full Text PDF

The use of nanomaterials as carriers for the delivery of growth factors has been applied to a multitude of applications in tissue engineering. However, issues of toxicity, stability, and systemic effects of these platforms have yet to be fully understood, especially for cardiovascular applications. Here, we proposed a delivery system composed of poly(dl-lactide- co-glycolide) acid (PLGA) and porous silica nanoparticles (pSi) to deliver vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF).

View Article and Find Full Text PDF

Eukaryotic lipids in a bilayer are dominated by weak cooperative interactions. These interactions impart highly dynamic and pliable properties to the membrane. C2 domain-containing proteins in the membrane also interact weakly and cooperatively giving rise to a high degree of conformational plasticity.

View Article and Find Full Text PDF